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1. Introduction.

For a given (not necessarily associative) ring R, we will let R denote any non-
zero homomorphic image of R, and write /<aR when / is a non-zero ideal of R.
For a given class M we have as usual the dual definitions UM = {R|all R¢ M}
and SM={R|if I=sR then /4 M}. Note that for these and most other construc-
tions it does not matter if 0€ M or not. Thus (unless otherwise stated) we assume 0
is a member of all classes. Also recall that a class M is hereditary if /<sReM
implies /e M.

It is well-known [see 1, p. 21] that a class Q is (Kurosh-Amitsur) semisimple
if and only if:

(i) whenever /<t Re€Q then 74 UQ (that is, there exists 1¢Q) and

(i1) if R& Q then there exists /<a R such that /¢ UQ. We note that one way
of saying thataclass P is (Kurosh-Amitsur) radical is to say that P=USP
where SP is semisimple.

In a recent paper [2] we considered the following conditions on a class M:

(A) Every REM has some ReSUM, and

(B) If /<« R and some [£M then there exists RE SUM.

We showed '

Proposition 1. [2: Theorem 1, p. 219] If M is an arbitrary class, then UM is
radical if and only if M satisfies (A), and UM is a hereditary radical if and only
if M satisfies both (A) and (B).

In the present paper we will consider the dual problem of finding necessary
and sufficient conditions on a class M so that SM will be a semisimple class, or
a homomorphically closed semisimple class. It turns out, as is usually the case,
that the answer is substantially simpler when the universal class (which we will
designate as W) in which we assume our construction are taking place is that of
all associative or alternative rings.

Another problem to which we have recently addressed ourselves [3] is that of
characterizing, for a given radical P. those classes M such that UM =P. In the
final section of the present paper we consider the dual problem of finding, for a given
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semisimple class Q, criteria on an arbitrary class M so that TM=0Q. It is easy
to see that classes M =N can exist for which SM=SN. For example, if J is the
Jacobson radical class (in the universal class W of all associative rings) and R is
a simple radical ring (say, Sasiada’s ring), then SJ/=SJ’ where J =J\(R%R).
This is clear since SJS SJ’ and if K¢ SJ then there exist /< K with /¢J. Now
if it were possible to have K¢ SJ’ then /= R%® R. But then K would have an ideal
isomorphic with R contradicting K¢ SJ’. Therefore, K¢SJ° and so S/=SJ".

It is, however, unfortunately true that the radical-semisimple duality is less than
perfect, and direct dualization of the methods of [3] seem not to be helpful. Indeed,
we are able to say rather less about this problem than we did [in 3] for the dual
radical problem. As one example: our criteria on M that SM=Q, or more gen-
erally on classes M and N that SM=SN, require that SM and SN be hered-
itary classes. This is of course true in the important case of semisimple classes defined
in the universal class of all associative (or alternative) rings, but the problem in the
general case is open, and there are a number of other such unresolved problems.

2. Conditions that SM be semisimple.
The property (A) which is equivalent to UM radical has as its dual:

(1) For every RE€M there exists /<a R with /¢ USM. However, property (1)
1s not equivalent to SM semisimple. In fact, we have:

Theorem 1. Property (1) is a necessary but not sufficient condition that SM
be a semisimple class.

PrROOF. To prove necessity, suppose SM is. semisimple and let 0#ReM.
Then certainly R¢ SM so R has a non-zero radical /¢ USM.

To show that (1) is not sufficient let M={Z° Z?} for k=2,3, ..., where
Z", Z; are the zero rings on the additive groups of Z, Z,. Clearly M satslies
(1) and we have J<a/<1 K where K is the ring of all (lower) triangular 3 by 3 matrices
over the real numbers, 7/ the ring of all 3 by 3 strictly triangular (zero diagonal)

000
real matrices, and J= |0 0 0| where x is real. Every image of 7 cither contains
x00
a non-zero image of J and hence has an ideal in M, or is itself a zero ring and
hence again has an ideal in M. Therefore, /¢ USM. But all ideals of K are uncount-
able and so KcSM. Thus K violates property (i) of semisimplicity.

In looking for conditions on a class M which are both sufficient and necessary
that SM be semisimple we are led to consider:

(2) For an arbitrary ring R if every R has a non-zero ideal in M then when-

ever R< K it follows that K also has a non-zero ideal in M.

(3) If I<aK with JEM then there exists some J<1K such that every J has

a non-zero ideal in M.

Theorem 2. For M an arbitrary class, SM is semisimple if and only if M satisfies
(2) and (3).

Proor. Suppose first that M has properties (2) and (3) and let ReSM. If
I<a R with Ie USM then every I would have a non-zero ideal in M. But then (2)
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would require R to have a non-zero ideal in M contiary to R€SM. Thus SM
has property (i). Now if R4 SM then there exists some /<R with /¢é M so by (3)
R has a non-zero ideal J¢ USM, thatis SM has property (ii).

On the other hand. if SM is semisimple and /<sK with /¢ M then K¢ SM
so K has a non-zero radical JEUSM. Thus M has property (3). Also if /=K
and every I has an ideal in M ther /€USM so K& SM. Thus K must contain
some non-zero ideal in M, thatis M has property (2).

Recall that a subring 4 of a ring R is said to be accessible in R if A=<
<l,..<al,=R for some n=1. Consider the condition on M:

(4) If a ring R has an accessible subring in M then it has an ideal in M.

Proposition 2. The class M has property (4) if and only if SM is a hered-
itary class.

Proor. If M has property (4) and /<R SM, then I¢SM since otherwise
R would have an accessible subring in M, namely some J<a/. If, on the other
hand, SM is heieditary then a ring with no ideals in M is in SM, so any acces-
sible subring would also be in SM, hence certainly not in M.

We also have

Proposition 3. For an aibitrary class M, property (4) implies property (2).

PrOOF. Let /<o R wheie every image of 7 has an ideal in M. Then in particular
I has such an ideal and hence by (4) the same is true of R.

Note that the converse is not true even in the case SM is semisimple, since
there exist examples of non-hereditary semisimple classes [see 4].

We can now establish simpler criteria for the associative (or alternative) case.

Theorem 3. If the universal class W which contains M (and relative to which
SM is defined) is the class of all associative or alternative rings then SM is semi-
simple of and only if M satisfies (1) and (4).

Proor. We use the criteria of Theorem 2 suppeosing first that M satisfies (1)
and (4). By Proposition 3 we already have (2). By Proposition 2 we also have SM
hereditary and it is well-known [1, Theorem 7.2, p. 25] that then USM is a radical
class. Now let /<K with J€ M so by (1) thereis some J<a/ with Je USM. Thus
USM(I)=0 and it is well-known that in the class of associative (or alternative)
rings USM(I)<aK. There is thus a non-zero ideal of K in USM, that is, M
satisfies property (3). Thus by Theorem 2 the class SM is semisimple.

On the other hand, SM semisimple implies property (1) by Theorem I, and
also implies (4) since it is well-known [I, Theorem 8.1, p. 29] that in the class of
associative (or alternative) rings all semisimple classes are hereditary.

Corollary 1. In the class of all associative (or alternative) rings SM is semi-
simple if and only if it is hereditary and has property (ii).

PRrOOF. The necessity is clear, and for sufficiency it follows from Proposition 2
that M satisfies (4). Also if R¢ M then R{ SM so by (ii) there exists /<aR with
Ic USM, thatis M satisfies (1).

If condition (B) is dualized we have
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(5) Foraring R ifsome R has a non-zero ideal in M then R has a non-zero
ideal in USM.
The theorem on hereditary radicals [2, Theorem 1, p. 219] dualizes fully as

Theorem 4. If SM is a semisimple class then SM is homomorphically closed if
and only if M satisfies (5).

PROOF. Suppose M has property (5) and R<SM. If some R< SM then R
has a non-zero ideal in M. By (5) R would also have an ideal in USM contrary
to RcSM. On the other hand. if R has no non-zero ideals in USM then it is in
SM so the homomorphic closure of SM implies that no R can have such an
ideal in M.

Remark that a class SM is a homomorphically closed semisimple class if and

only if it is a radical-semisimple class [see 1, p. 166).

3. Conditions on classes M and N so that SM=SN,
For M an arbitrary class of rings define.

M = {R|I< R for some IcM}.

Remark that (by Proposition 2) when SM is hereditary M is the class of all
rings having an accessible subring in M. From this definition it is immediate that

Proposition 4. For arbitrary classes M and N, if SNSSM then MEN
and SN=SM if and only if N=M.
We also have

Proposition 5. If M is an arbitrary class and N has property (4) then SNC SM
if and only if M N.

ProOF. Proposition (4) is the necessity, so let MS N and suppose R4 SM.
Then there exists /<aR with /e M and so some J<a/ with JcN. Then J is
accessible in R so R has an ideal in N, thatis R4 SN.

Corollary 2. If N has property (4) and NEM then SN=SM if and only
if MCN.

Corollary 3. If N has property (4) then SN=SM if and only if: (a) SM is
hereditary, (b) MEN, and (¢c) NEM.

In particular we note that if our universal class W is the class of all associative
rings. then Corollaries 2 and 3 apply to any class N of simple rings.

Theorem 5. For an arbitrary class M with property (4) the class M is the
largest class such that SM=SM.

ProoF. Corollary 2 implies - SM=SM and if MEN where SM=SN then
by Proposition 5 we have NS M.
Note that we easily have the dual

Theorem 5. For an arbitrary class M, if M={R|some REMY, then M is the
largest class for which UM =UM.

Remark that M and M can be very large. Indeed, if W is the universal class
in which our constructions are taking place, then it is easy to show that: (i) W=
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=MUSM if and only if M=M, and (i) W=MJUM if and only if M=M.
It is also easy to show that UM =SM if and only if M=M.

As in the radical case, we find that there are in general no smallest classes for
the S construction. We say that a class M satisfies a smallest condition for the S
construction if N properly contained in M implies SM properly contained in
SN. We have

Proposition 6. M satisfies a smallest condition if and only if for every Ke M
there exists some R such that K< R and for all /<= R whenever /¢ M then I=K.

Proor. First suppose M has a smallest condition and for an arbitrary KcM
let N=M"{K}. Then there exists R4 SM, RESN. Thus R must have K as an
ideal and since R€ SN the only ideal in M it could have would be K (or ideals
isomorphic to K).

For sufficiency suppose N is properly contained in M and let Kc M, K¢ N.
By hypothesis there exists a ring R such that K< R and with no M-ideals other
than those = K. Thus R¢SN whereas R¢ SM, thatis SM is properly contained
in SN.

We can say considerably more if M has the property (somewhat stronger
than (4)):

(4) If A€M 1is an accessible subring of a ring R then A< R.

Proposition 7. If M has property (4") then M satisfies a smallest condition
if and only if /<= R with both 7, R€EM implies /= R.

Proor. The sufficiency is clear from Proposition 6, so suppose M satisfies
a smallest condition and let /<=R with both 7/, R€ M. By Proposition 6 we can
find a ring K such that R< K and with no M-ideals other than those isomorphic
to R. But (4’)says that /=K and so /=R.

Corollary 4. In the universal class of all associative or alternative rings if M
is either (a) any class of simple rings or (b) any class of subdirectly irreducible rings
with unit, then M satisfies a smallest condition. Moreover, in either case (a) or
case (b) if the class M is homorphically closed then SM is semisimple.

Proor. The first statement follows from Proposition 7 provided M has property
(4’). For case (b) this is easy to see for either associative or alternative rings, and the
property is well-known for simple associative rings. For simple alternative rings
property (4") also follows from known results, but there is the following easy direct
proof (due to Tim Anderson): Without loss of generality we may assume J</<aR
where J is simple and R alternative. Then J*=J so any member of J is the sum
of terms of form xy where x, yeJ. If réR then (xy)r=(x, v, r)+x(yr) where
(x, y, r)=(xy)r—x(yr). But in an alternative ring (x,y,r)=—(x.r, y)=—(xr)y+
+x(ry). Thus (xp)r (and similarly r(xp)) isin J so J<R.

The second statement follows from Theorem 3 since M homomorphically
closed implies M S USM.

We conclude with some special cases of classes M and N for which SM=SN.

Proposition 8. If M satisfies property (4) then S(MUUSM)=SM.

Proor. This follows directly from Proposition 5 since USM S M.
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For an arbitrary class M we will define
DM = {ReM|I«M for all I< R},

and call DM the hereditary hull of M. Note that this construction has already
appeared [5, p. 68] where we showed: If P is a radical class then the hereditary hull
of P is the largest hereditary radical contained in P. Suppose we also define

M’ = {R|R§ SM}, then

Proposition 9. For M an arbitrary class of rings SM’ is the hereditary hull
of SM.

Proor. If RESM’ then RéSM and if <R then 14 M’, that is 1€ SM.

Corollary 5. For M an arbitrary class of rings, SM is hereditary if and only
if SM=SM’.

Corollary 6. In the class of all associative or alternative rings SM is semi-
simple if and only if M has property (1) and SM=SM".
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