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If K is an algebraically closed field and L a subfield for which [K:L]<=
the Artin-Schreier theorem says that [K:L]=1 or 2. When [K:L]=2 L is a real
closed ("maximal ordered®) subfield of K. K~NopFMACHER and SiNCLAIR [4] asked
if a subfield L of the complex number field C such that [C:L]=2 would be isomor-
phic to the real number field R. BIALYNICKI-BIRULA [1] gave an example of such an
L where L*R, and subsequently studied subfields of piescribed codimension.

Using valuation theory we shall give explicit families of 22 distinct isomor-
phism types of subfields of codimension 2 in C and answer corresponding questions
for arbitrary algebraically closed fields of characteristic 0.

Recall that a field F with a valution v is called maximally complete if the
prolongation of v toany proper extension field of F has either strictly larger res-
idue class field or strictly larger value group. V is called a rank one valuation if its
value group is a subgroup of the additive group of the real numbers.

Lemma. There exist 2%° non-isomorphic ordered divisible subgroups of the
additive (ordered) group of the real numbers R.

Proor. Let {r,} be a transcendency basis of R with respect to Q. For any
subset 7/ of {t,} let G, be the divisible subgroup of R generated by 1 and {1,},
t,€1. Since isomorphisms of ordered divisible subgroups of R are homotheties,
the G,’s are readily checked to be non-isomorphic ordered groups. Since Card{z,}=

=2% the family {G;} has cardinality 2.

Theorem 1. To any maximally complete rank one valuation w of the complex
number field C for which the residue class field has characteristic 0 there corre-
sponds a subfield K, of codimension 2 in C such that the restriction of w to K,
is maximally complete. Here K, #K,, if w, and w, are inequivalent. If K, and
K,, are (algebraically) isomorphic, w, is equivalent to w.¢@ for a suitable auto-
morphism ¢ of the complex field C.

Proor. Let C be maximally complete with respect to w and let G be the
value group. The resiude class field L is an algebraically closed field of charac-
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teristic 0. By the structure theorem for maximally complete fields (cf. SCHILLING
[6]) we obtain that with respect to a suitable factor set from G to L the field C is
analytically isomorphic to a formal power series field over L with exponents in G.
Since the multiplicative group of L is divisible we may assume the factor set is
identically 1. Hence C is analytically isomorphic to the formal power series field
L((G)) consisting of all power series /(x)= > /,x9, I, L, gcC, where the support

supp (/(x))={g€G|l,=0} is a well-ordered S!l,.leCt of G. Since L is algebraically
closed of characteristic 0 and Card (L)=2%, L may be taken to be an algebra-
ically closed subfield of C. LR has then codimension 2 in L and (L(R)((G))
is a subfield of codimension 2 in C which is maximally complete with respect to w.

It is well known that a field is algebraically closed if it is complete with respect
to two non-equivalent rank one valuations. This gives the second assertion of the
theorem. Finally, if ¢ is an (algebraical) isomorphism from K,,, to K|, K, iscomp-
lete with respect to the valuations w; and w,o which are thus equivalent on K, .
o extends to an automorphism ¢ of C-w, and w,¢ are thus prolongations of valu-
ations which are equivalent on K, . Since K, in particular is henselian, w, and
wy( are equivalent on C.

Corollary. There exist exactly 2 non-isomorphic (non-archimedean ordered)
subfields of codimension 2 in C.

Proor. For any ordered divisible subgroup G of R there exists a valuation
of C with value group G for which C is maximally complete and the corre-
sponding residue class field has characteristic 0. By the lemma there are 22% such
groups G and the corresponding subfields of C are non-isomorphic by theorem 1
(and readily checked to be non-archimedean ordered). This proves the corollary

since obviously there cannot be more than 22 subfields of C.

Remark 1. 1t is easy to see that there are 2*™ non-isomorphic arch‘medean
ordered subfields of codimension 2 in C. The intersection of all such subfields is the
field of all totally real algebraic numbers.

Remark 2. The above proofs show that if G runs through 2% non-isomorphic

subgroups of R the power series fields R((G)) form 22% distinct isomorphism
types of fields embeddable with codimension 2 in C.

Remark 3. An explicit family of non-tsomorphlc helds of codimension 2 in C
can be obtained as follows: If L,=R,L;,,= U L,((x™)), i=0, then the fields

L; are non-isomorphic and embeddable with codmlensmn 2in C. Each L; is
henselian but not complete with respect to any valution.
Next we consider arbitrary algebraically closed fields of characteristic 0.

Theorem 2. Let K be an algebraically closed field of characteristic 0. If K
is an algebraic extension of the rational number field Q there is up to isomorphism
Just one subfield of codimension 2 in K. Otherwise there are exactly 2™ non-
isomorphic subfields of condimension 2 in K. Moreover, for any subfield L of
codimension 2 in K there are 2% isomorphic subfields of codimension 2 in K.
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Proor. Let ¢t be the transcendency degree of K with respect to Q. If =0
any real closed subfield of K is isomorphic to the field of all real algebraic numbers,
and the restriction to any such subfield of the 2% automorphisms of K give rise
to 2% isomorphic copies.

If 1=0 we fiist consider the case where ¢ is finite. Let (a;} (Card ({o})=2%)
be a transcendency basis for the real number field R over {2;} contains 2%
mutually disjoint subsets A; each consisting of ¢ eclements. Let K; be the real
closure of Q{x,}.(2,€4;) m R with respect to the order induced by R. The
ordered fields K; are obviously pairwise non-isomorphic. The algebraic closure
of each K; is an extension of degiee 2 and is isomorphic to K: hence the first
statement of the theorem is proved when ¢ is finite. As for the second statement
let L be a subfield of condimension 2 in K. Let f,,...,f, be a transcendency
basis for L/Q. There is an automorphism ¢ of Q(f,, ..., f,) which doest not
preserve the order that L(2Q(f,, ..., f;)) has. ¢ extends to 2% distinct auto-
morphism of K/Q whose restiictions to L give rise to 2% isomorphic copies of
L in K.

Next consider the case where ¢ is an infinite cardinal number \.

Clearly Card (K)=N. Let G be the direct sum

G= S ®Ae, A, =Z or Z+Z)2
=i

where =z runs through all ordinal numbers <=x. We order G lexicographically.
Let F=Q((G)) be the field of all formal power series on G over Q. Any element
ke F can be written k=2 k,x9 k,cQ where the support of k supp (k)={gcG|

k,=0} is a wellordered suI;set of G. F can be ordered in the obvions lexicographic
way.

Generally, to any (non-archimedean) ordering of a field corresponds a valuation
whose valuation ring consits of all elements which are not infinitely greater than |
(cf. [2] Ex. 3 p. 171).

For F=Q((G)) this valuation wg is defined by wg(k)=min {g}, (g€ supp(k)).
Let B={a|d,=2Z), C={«|4,=Z+Z V2} and D=|J ¢,U U ¢,U U V2e,. Obvi-

zc B 2 C a€C

ously Card (D)=§. Let {u},d<D be a lranscende;cy basis for K over Q and
set M=Q({u,}). Define a mapping ¢ from M to F by ¢(u,)=X" and ¢(g)=gq,

£Q. Hereby one gets an isomorphism of M onto a subfield of F and thus and
ordering of M. The corresponding valuation is wg¢. G is the value group of wy.
Let M; be a real closure in K of the ordered field M. M is an ordered field
whose corresponding valuation has the value group GR Q= ZGA(A ®Q)/, where
A,2Q=Q or Q+Q V2 according as x€ B or «£<C. »

In the definition of G we have for each « two choise for 4, and we thus get
2% ordered groups. By considering skeletons (cf. Fuchs [3] or Ribenboim [5])
it is easily seen that the corresponding groups G®Q are pairwise non-isomorphic
(qua ordered groups). This implies that the corresponding real closed fields M
are non-isomorphic since any isomorphism would be order-preserving; the cor-
responding valuations wg; would then be equivalent and in particular have order-
isomorphic value groups.
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Finally, let L be a subfield of codimension 2in K. If {f;} isa transcendency
basis for L over Q there are 2% permutations of {f;} which extend to 2% auto-
morphisms of K/Q. The restrictions of these automorphisms to L give rise to 2%
distrinct isomorphic sopies of L having codimension 2 in K. Theorem 2 is now
proved.

Remark. It is not hard to show that the intersection of all subfields of codi-
mension 2 in K is the field of all totally real algebraic numbers (i.e. algebraic
numbers all of whose conjugates are real). One could also mention, that a subfield
of codimension 2 in K has a trivial automorphism group if and only if it is archi-
median ordered. In fact, any nonarchimedian ordered real closed field L has at
least Card (L) distinct automorphisms.

BiaLyNICKI-BIRULA [1] proved that any algebraically closed field has a subfield
of countable condimension. We shall finish by proving the following

Theorem 3. Let K be an arbitrary algebraically closed field of characteristic 0.
If Card (K)=2% and & an infinite cardinal number <Card (K) there exists a sub-
field L of K for which [K:L]=§.

Corollary. Assuming the continuum hypothesis an algebraical closed field of
characteristic 0 has subfield of any prdscribed infinite codimension —=Card (K).

PRrOOF. (of Theorem 3). Let Card (K)=R and let G be the lexicographically
ordered vector space over the rational field Q:

G=3 Qe

a<R

where « runs through all ordinals <R. For any finite set / of ordinals <} let
F; be the subfield of the formal power series field C((G)) consisting of all power
series of the form 3 ¢,x? ¢,6C where the exponents g belong to the Q-space

generated by {ex}, ;E[ and the denominators of ¢, in the expression g=ZXg,e,,
4,<Q, are bounded.

C((G)) is a maximally complete field with algebraically closed residue class
field and divisible value group and hence algebraically closed. F; is algebraically
closed in C((G)) and consequently itself an algebraically closed field.

For an arbitrary set / of ordinals =X we define F;= (] F;, where I” runs

I
through all finite subsets of /. Further we define F;" as the subficld of F; of all
power series whose exponents g have “integral coefficients™, i.e. belong to Z_’_ ®Ze,.

a<N
Now let J be the set of all ordinals =X. Then Card(F;)=Card (/)=\ since
N=2%, Hence F;~ K. We now choose a subset / of J such that Card (J\J)=8
and set L=F N F,. The elements x% g=2X g,e, (finite sum), acJ\J where the
¢,’s run through a set of representatives of the rational numbers modulo the inte-
gers, form a basis for F; over L. Thus [F,:L]=X and the theorem is proved in
view of the isomorphism F, =K.
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