Some remarks on valuations and subfields of given codimension in algebraically closed fields

To the memory of Andor Kertész

By C. U. JENSEN (Copenhagen, Denmark)

If K is an algebraically closed field and L a subfield for which $[K:L] < \infty$ the Artin-Schreier theorem says that [K:L] = 1 or 2. When [K:L] = 2 L is a real closed ("maximal ordered") subfield of K. Knopfmacher and Sinclair [4] asked if a subfield L of the complex number field C such that [C:L] = 2 would be isomorphic to the real number field C. Bialynicki-Birula [1] gave an example of such an L where $L \not\succeq R$, and subsequently studied subfields of prescribed codimension.

Using valuation theory we shall give explicit families of $2^{2\aleph_0}$ distinct isomorphism types of subfields of codimension 2 in $\mathbb C$ and answer corresponding questions

for arbitrary algebraically closed fields of characteristic 0.

Recall that a field F with a valution v is called maximally complete if the prolongation of v to any proper extension field of F has either strictly larger residue class field or strictly larger value group. V is called a rank one valuation if its value group is a subgroup of the additive group of the real numbers.

Lemma. There exist $2^{2\aleph_0}$ non-isomorphic ordered divisible subgroups of the additive (ordered) group of the real numbers \mathbf{R} .

PROOF. Let $\{t_{\alpha}\}$ be a transcendency basis of \mathbf{R} with respect to \mathbf{Q} . For any subset I of $\{t_{\alpha}\}$ let G_I be the divisible subgroup of \mathbf{R} generated by 1 and $\{t_{\alpha}\}$, $t_{\alpha} \in I$. Since isomorphisms of ordered divisible subgroups of \mathbf{R} are homotheties, the G_I 's are readily checked to be non-isomorphic ordered groups. Since $\operatorname{Card}\{t_{\alpha}\}=2^{\aleph_0}$ the family $\{G_I\}$ has cardinality $2^{2^{\aleph_0}}$.

Theorem 1. To any maximally complete rank one valuation w of the complex number field \mathbf{C} for which the residue class field has characteristic 0 there corresponds a subfield K_w of codimension 2 in \mathbf{C} such that the restriction of w to K_w is maximally complete. Here $K_{w_1} \neq K_{w_2}$ if w_1 and w_2 are inequivalent. If K_{w_1} and K_{w_2} are (algebraically) isomorphic, w_1 is equivalent to $w_2 \varphi$ for a suitable automorphism φ of the complex field \mathbf{C} .

PROOF. Let C be maximally complete with respect to w and let G be the value group. The residue class field L is an algebraically closed field of charac-

318 C. U. Jensen

teristic 0. By the structure theorem for maximally complete fields (cf. SCHILLING [6]) we obtain that with respect to a suitable factor set from G to L the field C is analytically isomorphic to a formal power series field over L with exponents in G. Since the multiplicative group of L is divisible we may assume the factor set is identically 1. Hence C is analytically isomorphic to the formal power series field L(G) consisting of all power series $l(x) = \sum_{g} l_g x^g$, $l_g \in L$, $g \in C$, where the support supp $(l(x)) = \{g \in G | l_g \neq 0\}$ is a well-ordered subset of G. Since L is algebraically closed of characteristic 0 and C and

It is well known that a field is algebraically closed if it is complete with respect to two non-equivalent rank one valuations. This gives the second assertion of the theorem. Finally, if σ is an (algebraical) isomorphism from K_{w_1} to K_{w_2} K_{w_1} is complete with respect to the valuations w_1 and $w_2\sigma$ which are thus equivalent on K_{w_1} . σ extends to an automorphism φ of $\mathbb{C} \cdot w_1$ and $w_2\varphi$ are thus prolongations of valuations which are equivalent on K_{w_1} . Since K_{w_1} in particular is henselian, w_1 and $w_2\varphi$ are equivalent on \mathbb{C} .

Corollary. There exist exactly $2^{2^{\aleph_0}}$ non-isomorphic (non-archimedean ordered) subfields of codimension 2 in \mathbb{C} .

PROOF. For any ordered divisible subgroup G of \mathbb{R} there exists a valuation of \mathbb{C} with value group G for which \mathbb{C} is maximally complete and the corresponding residue class field has characteristic 0. By the lemma there are $2^{2\aleph_0}$ such groups G and the corresponding subfields of \mathbb{C} are non-isomorphic by theorem 1 (and readily checked to be non-archimedean ordered). This proves the corollary since obviously there cannot be more than $2^{2\aleph_0}$ subfields of \mathbb{C} .

- Remark 1. It is easy to see that there are $2^{2^{\aleph_0}}$ non-isomorphic archimedean ordered subfields of codimension 2 in \mathbb{C} . The intersection of all such subfields is the field of all totally real algebraic numbers.
- Remark 2. The above proofs show that if G runs through $2^{2^{\aleph_0}}$ non-isomorphic subgroups of R the power series fields $\mathbf{R}(G)$ form $2^{2^{\aleph_0}}$ distinct isomorphism types of fields embeddable with codimension 2 in \mathbb{C} .
- Remark 3. An explicit family of non-isomorphic fields of codimension 2 in \mathbb{C} can be obtained as follows: If $L_0 = R$, $L_{i+1} = \bigcup_{n=1}^{\infty} L_i((x^{\frac{1}{n}}))$, $i \ge 0$, then the fields L_i are non-isomorphic and embeddable with codimension 2 in \mathbb{C} . Each L_i is henselian but not complete with respect to any valution.

Next we consider arbitrary algebraically closed fields of characteristic 0.

Theorem 2. Let K be an algebraically closed field of characteristic 0. If K is an algebraic extension of the rational number field \mathbb{Q} there is up to isomorphism just one subfield of codimension 2 in K. Otherwise there are exactly $2^{\operatorname{Card}(K)}$ non-isomorphic subfields of condimension 2 in K. Moreover, for any subfield L of codimension 2 in K there are $2^{\operatorname{Card}(K)}$ isomorphic subfields of codimension 2 in K.

PROOF. Let t be the transcendency degree of K with respect to \mathbb{Q} . If t=0 any real closed subfield of K is isomorphic to the field of all real algebraic numbers, and the restriction to any such subfield of the 2^{\aleph_0} automorphisms of K give rise to 2^{\aleph_0} isomorphic copies.

If t>0 we first consider the case where t is finite. Let $\{\alpha_i\}$, $(\operatorname{Card}(\{\alpha_i\})=2^{\aleph_0})$ be a transcendency basis for the real number field \mathbf{R} over \mathbf{Q} . $\{\alpha_i\}$ contains 2^{\aleph_0} mutually disjoint subsets A_j each consisting of t elements. Let K_j be the real closure of $\mathbf{Q}\{\alpha_v\}$, $(\alpha_v \in A_j)$ in \mathbf{R} with respect to the order induced by \mathbf{R} . The ordered fields K_j are obviously pairwise non-isomorphic. The algebraic closure of each K_j is an extension of degree 2 and is isomorphic to K; hence the first statement of the theorem is proved when t is finite. As for the second statement let L be a subfield of condimension 2 in K. Let β_1, \ldots, β_t be a transcendency basis for L/\mathbf{Q} . There is an automorphism σ of $\mathbf{Q}(\beta_1, \ldots, \beta_t)$ which doest not preserve the order that $L(\supseteq \mathbf{Q}(\beta_1, \ldots, \beta_t))$ has. σ extends to 2^{\aleph_0} distinct automorphism of K/\mathbf{Q} whose restrictions to L give rise to 2^{\aleph_0} isomorphic copies of L in K.

Next consider the case where t is an infinite cardinal number \aleph . Clearly Card $(K) = \aleph$. Let G be the direct sum

$$G = \sum_{\alpha \in \mathbb{N}} \oplus A_{\alpha} e_{\alpha}, \quad A_{\alpha} = \mathbf{Z} \quad \text{or} \quad \mathbf{Z} + \mathbf{Z} \sqrt{2}$$

where α runs through all ordinal numbers <x. We order G lexicographically. Let $F = \mathbf{Q}(G)$ be the field of all formal power series on G over \mathbf{Q} . Any element $k \in F$ can be written $k = \sum_{g} k_g x^g$, $k_g \in \mathbf{Q}$ where the support of k supp $(k) = \{g \in G \mid k_g \neq 0\}$ is a wellordered subset of G. F can be ordered in the obvious lexicographic way.

Generally, to any (non-archimedean) ordering of a field corresponds a valuation whose valuation ring consits of all elements which are not infinitely greater than 1 (cf. [2] Ex. 3 p. 171).

For $F=\mathbf{Q}((G))$ this valuation w_G is defined by $w_G(k)=\min \{g\}, (g\in \operatorname{supp}(k))$. Let $B=\{\alpha|A_\alpha=Z\}, C=\{\alpha|A_\alpha=Z+Z \ |\ 2\}$ and $D=\bigcup_{\alpha\in B} e_\alpha\cup\bigcup_{\alpha\in C} e_\alpha\cup\bigcup_{\alpha\in C} \sqrt{2}e_\alpha$. Obviously Card $(D)=\Re$. Let $\{u_d\}, d\in D$ be a transcendency basis for K over \mathbf{Q} and set $M=\mathbf{Q}(\{u_d\})$. Define a mapping φ from M to F by $\varphi(u_d)=X^d$ and $\varphi(q)=q$, $q\in \mathbf{Q}$. Hereby one gets an isomorphism of M onto a subfield of F and thus and ordering of M. The corresponding valuation is $w_G\varphi$. G is the value group of w_G . Let M_G be a real closure in K of the ordered field M. M_G is an ordered field whose corresponding valuation has the value group $G\otimes \mathbf{Q}=\sum_{\alpha\in K} \oplus (A_\alpha\otimes \mathbf{Q})I_\alpha$ where $A_\alpha\otimes \mathbf{Q}=\mathbf{Q}$ or $\mathbf{Q}+\mathbf{Q}$ $\sqrt{2}$ according as $\alpha\in B$ or $\alpha\in C$.

In the definition of G we have for each α two choise for A_{α} and we thus get 2^{\aleph} ordered groups. By considering skeletons (cf. Fuchs [3] or Ribenboim [5]) it is easily seen that the corresponding groups $G \otimes \mathbf{Q}$ are pairwise non-isomorphic (qua ordered groups). This implies that the corresponding real closed fields M_G are non-isomorphic since any isomorphism would be order-preserving; the corresponding valuations w_G would then be equivalent and in particular have order-isomorphic value groups.

320 C. U. Jensen

Finally, let L be a subfield of codimension 2 in K. If $\{\beta_i\}$ is a transcendency basis for L over \mathbb{Q} there are 2^{\aleph} permutations of $\{\beta_i\}$ which extend to 2^{\aleph} automorphisms of K/\mathbb{Q} . The restrictions of these automorphisms to L give rise to 2^{\aleph} distrinct isomorphic sopies of L having codimension 2 in K. Theorem 2 is now proved.

Remark. It is not hard to show that the intersection of all subfields of codimension 2 in K is the field of all totally real algebraic numbers (i.e. algebraic numbers all of whose conjugates are real). One could also mention, that a subfield of codimension 2 in K has a trivial automorphism group if and only if it is archimedian ordered. In fact, any nonarchimedian ordered real closed field L has at least Card (L) distinct automorphisms.

BIALYNICKI-BIRULA [1] proved that any algebraically closed field has a subfield of countable condimension. We shall finish by proving the following

Theorem 3. Let K be an arbitrary algebraically closed field of characteristic 0. If $Card(K) \ge 2^{\aleph_0}$ and \aleph an infinite cardinal number -Card(K) there exists a subfield L of K for which $[K:L] = \aleph$.

Corollary. Assuming the continuum hypothesis an algebraical closed field of characteristic 0 has subfield of any prdscribed infinite codimension <Card (K).

PROOF. (of Theorem 3). Let $Card(K) = \overline{\aleph}$ and let G be the lexicographically ordered vector space over the rational field \mathbb{Q} :

$$G = \sum_{\alpha < \overline{\aleph}} \oplus \mathbf{Q} e_{\alpha}$$

where α runs through all ordinals $< \overline{\aleph}$. For any finite set I of ordinals $< \overline{\aleph}$ let F_I be the subfield of the formal power series field $\mathbb{C}(G)$ consisting of all power series of the form $\sum_{g} c_g x^g c_g \in \mathbb{C}$ where the exponents g belong to the \mathbb{Q} -space

generated by $\{e\alpha\}$, $\alpha \in I$ and the denominators of q_{α} in the expression $g = \Sigma g_{\alpha} e_{\alpha}$, $q_{\alpha} \in \mathbb{Q}$, are bounded.

C(G) is a maximally complete field with algebraically closed residue class field and divisible value group and hence algebraically closed. F_I is algebraically closed in C(G) and consequently itself an algebraically closed field.

For an arbitrary set I of ordinals $<\overline{\aleph}$ we define $F_I = \bigcup_{I'} F_{I'}$ where I' runs through all finite subsets of I. Further we define F_I^* as the subfield of F_I of all power series whose exponents g have "integral coefficients", i.e. belong to $\sum_{\alpha < \overline{\aleph}} \oplus \mathbb{Z} e_{\alpha}$.

Now let J be the set of all ordinals $<\overline{\aleph}$. Then $\operatorname{Card}(F_j) = \operatorname{Card}(J) = \overline{\aleph}$ since $\overline{\aleph} > 2^{\aleph_0}$. Hence $F_j \simeq K$. We now choose a subset I of J such that $\operatorname{Card}(J \setminus I) = \aleph$ and set $L = F_J^* \cap F_I$. The elements x^g , $g = \sum q_\alpha e_\alpha$ (finite sum), $\alpha \in J \setminus I$ where the q_α 's run through a set of representatives of the rational numbers modulo the integers, form a basis for F_J over L. Thus $[F_J:L] = \aleph$ and the theorem is proved in view of the isomorphism $F_J \simeq K$.

References

- A. BIALYNICKI—BIRULA, On subfields of countable codimension, Proc. Amer. Math. Soc., 35 (1972), 354—356.

- [2] N. BOURBAKI, Algebre commutative, Chap. 5—6. Paris, 1964.
 [3] L. FUCHS, Partially ordered algebraic systems. London, 1963.
 [4] J. KNOPFMACHER and A. M. SINCLAIR, Fields with few extensions, Proc. Amer. Math. Soc. 29 (1971), 255—258.
 [5] P. RIBENBOIM, Theorie des groupes ordonnes. Bahia Blanca, 1963.
 [6] O. F. G. SCHILLING, The theory of valuations. Mathematical surveys, IV. New York, 1950.

(Received July 1, 1975.)