On generalized absolute Cesaro summability factors

By ISTVÁN SZALAY (Szeged)

Let Σa_n be a given series with partial sums s_n . By $\sigma_n^{(\alpha)}$ we denote the *n*-th Cesaro means of order α of the sequences $\{s_n\}$. If the series $\Sigma n^{k-1} | \sigma_n^{(\alpha)} - \sigma_{n-1}^{(\alpha)}|^k$ $(k \ge 1; \alpha > -1)$ is convergent, we say that the series Σa_n is absolute summable (C, α) with index k or simply summable $|C, \alpha|_k$.

A sequence $\{\lambda_n\}$ is said to be a $|C, \alpha|_k$ summability factor of the series $\sum a_n$ if multiplying it term by term with λ_n , the factored series is $|C, \alpha|_k$ summable.

We have the following theorems.

Theorem 1. Let $k \ge 1$, $0 \le \alpha \le 1$ and let $\{\lambda_n\}$ be a positive non-increasing and convex sequence, $\{\gamma_n\}$ be a positive non-decreasing sequence such that $\Delta \gamma_\mu = O(\gamma_n/n)$ $(n=1,2,\ldots;\mu=n,n+1,\ldots,2n)$. If

$$\sum_{n=1}^{\infty} \lambda_n^k |\Delta \gamma_n| < \infty$$

and

(2)
$$\sum_{v=1}^{n} v^{k-1} |\sigma_{v}^{(\alpha)} - \sigma_{v-1}^{(\alpha)}|^{k} = O(\gamma_{n})$$

then the sequence $\{\lambda_n\}$ is a $|C, \alpha|_k$ summability factor of the series Σa_n .

The special case k=1, $\gamma_n = \log n$ and $\lambda_n = (\log n)^{-1-\epsilon}$ ($\epsilon > 0$) was proved by Sunouchi [7]. Using a result of Németh (see Lemma 2) we can prove that

$$\sum_{\nu=1}^n \nu^{k-1} |\sigma_{\nu}^{(\alpha)} - \sigma_{\nu-1}^{(\alpha)}|^k = O\left(\sum_{\nu=1}^n \frac{|S_{\nu}|^k}{\nu^{k(\alpha-1)+1}}\right),$$

so we have the following.

Corollary. If the sequences $\{\lambda_n\}$ and $\{\gamma_n\}$ are satisfying the conditions of Theorem 1 and

$$\sum_{v=1}^{N} \frac{\left|S_{v}\right|^{k}}{v^{k(\alpha-1)+1}} = O(\gamma_{n})$$

then the series $\sum \lambda_n a_n$ is $|C, \alpha|_k$ summable.

The special case $\alpha = 1$ and $\gamma_n = \log n$ was proved by MAZHAR [3] and MISHRA [4].

The next theorem gives a result concerning the $|C, \alpha|_k$ summability of negative order α , too.

Theorem 2. Let $k \ge 1$; $-\frac{1}{k} < \alpha \le 1$ and let $\{\lambda_n\}$ be a positive convex sequence such that

$$\sum_{n=1}^{\infty} \frac{\lambda_n^k}{n^{k(\alpha-1)+1}} < \infty.$$

If

(4)
$$\sum_{v=1}^{n} \left| \frac{1}{v} \sum_{\mu=1}^{v} \mu a_{\mu} \right|^{k} = O(n)$$

then the sequence $\{\lambda_n\}$ is a $|C, \alpha|_k$ summability factor of the series Σa_n .

Finally we have two results for Fourier series.

Theorem 3. If $\{\lambda_n\}$ satisfies the conditions of Theorem 2 then $\{\lambda_n\}$ is a $|C, \alpha|_k$ summability factor of Fourier series of any integrable function almost everywhere.

The special case k=1 and $\alpha=1$ was proved by Chow [1] and Sunochi [6]. For $f(x) \in L^p$ we define

$$\omega_p(t,f) = \sup_{0 < h \le t} \left\{ \int_{-\pi}^{\pi} |f(x+h) + f(x-h) - 2f(x)|^p dx \right\}^{1/p}.$$

Theorem 4. Let $f(x) \in L^p$ $(1 , <math>1 \le k < 2$ and let $\{\mu_n\}$ be a non-increasing sequence tending to zero and satisfying the condition

$$\sum_{n=1}^{\infty} \frac{1}{n \left(\sum_{v=1}^{n} \mu_{v}\right)^{\frac{2k}{2-k}}} < \infty.$$

If

$$\sum_{n=1}^{\infty} \mu_n \omega_p \left(\frac{1}{n}, f \right) < \infty$$

then the Fourier series of f(x) is summable $|C, \alpha|_k$ almost everywhere for $\alpha > \frac{1}{p}$.

The special case k=1 was proved in [8]. The proof of Theorem 4 runs similarly to that of Theorem I of [8], we only have to use Lemma 1 instead of Lemma 4 of [8], so we omit the proof of Theorem 4.

We need the following lemmas. Generalizing and a little lit modifying a *Chow's lemma* ([2]. Lemma 4) we obtain

Lemma 1. Let $k \ge 1$, $0 \le \alpha \le 1$ and let $\{\lambda_n\}$ be a positive sequence such that the sequence $\{|\Delta \lambda_n|\}$ is 1) non-increasing. If

(5)
$$\sum_{n=1}^{\infty} \frac{\lambda_n^k |t_n^{(\alpha)}|^k}{n} < \infty \quad \left(t_n^{(\alpha)} = n(\sigma_n^{(\alpha)} - \sigma_{n-1}^{(\alpha)})\right)$$

¹⁾ $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$

and

(6)
$$\sum_{n=1}^{\infty} n^{k-1} |\Delta \lambda_n|^k |t_n^{(a)}|^k < \infty$$

then²) the series $\sum \lambda_n a_n$ is $|C, \alpha|_k$ summable.

We require the following inequality of NÉMETH ([5]) as

Lemma 2. Let $d_n \ge 0$ and $l_n > 0$ (n = 1, 2, ...) be given sequences. If the triangular matrix $M = (C_{n, \nu})$ satisfies the following conditions $C_{n, \nu} \ge 0$ $(\nu < n)$, $C_{n, \nu} = 0$ $(\nu \ge n)$ and $0 \le C_{m, \nu} \le C \cdot C_{n, \nu}$ $(0 < \nu \le n \le m)$ C denotes a positive absolute constant, then for any $k \ge 1$

$$\sum_{n=1}^{\infty} l_n \left(\sum_{\nu=1}^n C_{n,\nu} d_{\nu} \right)^k \leq C^{k(k-1)} k^k \sum_{n=1}^{\infty} l_n^{1-k} \left(\sum_{\nu=n}^{\infty} l_{\nu} C_{\nu,n} \right)^k d_n^k.$$

Using the Abel transformation it is easy to prove the following lemmas.

Lemma 3. If $k \ge 1$ and $\{b_n\}$ is a non-increasing sequence such that $\sum_{n=1}^{\infty} b_n < \infty$, then the series $\sum_{n=1}^{\infty} n^{k-1} b_n^k$ is convergent and for every v = 1, 2, ...

(7)
$$\sum_{n=4v+1}^{\infty} n^{k-1} b_n^k = O\left[\left\{\sum_{n=v}^{\infty} b_n\right\}^k\right]$$
 hold.

Lemma 4. Let $\{b_n\}$ be a non-increasing sequence such that $\sum_{n=1}^{\infty} b_n < \infty$ and $\{C_n\}$ be a sequence of positive numbers such that $nC_{\mu} = O\left(\sum_{i=1}^{n} c_i\right)$, where n=1, 2, ...; $\mu=n, n+1, ..., 2n$. If $k \ge 1$ and

(8)
$$\sum_{n=1}^{\infty} \left(\sum_{m=n}^{\infty} b_m \right)^k C_n < \infty$$

then the series $\sum_{n=1}^{\infty} n^k b_n^k C_n$ is convergent.

Finally we shall use the following obvious facts as lemmas.

Lemma 5. Let $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\varrho_n\}$ be given positive sequences such that $\{\alpha_n\}$ non-increasing, $\{\varrho_n\}$ non-decreasing. If $\sum_{v=1}^n \alpha_{v+1} |\Delta \varrho v| = O(1)$ and $\sum_{v=1}^n \beta_v = O(\varrho_n)$ then $\sum_{v=1}^n \alpha_v \beta_v = O(1)$.

²) If $\alpha = 0$ the condition (6) is superfluous.

346 I. Szalay

Lemma 6. Let $\alpha_n \ge 0$ and $\beta_n \ge 0$ be given sequences. If $\sum_{n=1}^{\infty} \alpha_n < \infty$, $C_1 \alpha_{2^{n+1}} \le \alpha_{2^{n+1$

PROOF of Theorem 1.

First using Lemma 5 with $\alpha_n = \lambda_n^k$, $\beta_n = n^{k-1} |\sigma_n^{(\alpha)} - \sigma_{n-1}^{(\alpha)}|^k$ and $\varrho_n = \gamma_n$ by (1) and (2) we obtain (5).

Secondly we use Lemma 5 $\alpha_n = (\Delta \lambda_n)^k$, $\beta_n = n^{2k-1} |\sigma_n^{(\alpha)} - \sigma_{n-1}^{(\alpha)}|^k$ and $\varrho_n = n^k \gamma_n$. By (2) we have that $\sum_{v=1}^n \beta_v = O(\varrho_n)$. If we can show that

(9)
$$\sum_{n=1}^{\infty} (\Delta \lambda_{n+1})^k |\Delta(n^k \gamma_n)| < \infty$$

then, by Lemma 5, we have (6). Finally we apply Lemma 1 and have Theorem 1. Now we prove (9)

$$\sum_{n=1}^{\infty} (\Delta \lambda_{n+1})^k |\Delta (n^k \gamma_n)| \leq K(k) \sum_{n=1}^{\infty} n^k (\Delta \lambda_n)^k |\Delta \gamma_n| + K(k) \sum_{n=1}^{\infty} n^{k-1} (\Delta \lambda_n)^k \gamma_n \equiv S_1 + S_2.$$

The constant K is depending on its argument only.

Using Lemma 4 with $b_n = \Delta \lambda_n$ and $C_n = |\Delta \gamma_n|$, by (1) and (8) we have that S_1 is finite.

Applying Lemma 3 with $b_n = \Delta \lambda_n$ and $C_n = |\Delta \gamma_n|$ we get

$$S_{2} \leq K(k) \left(\sum_{n=2}^{\infty} n^{k-1} (\Delta \lambda_{n})^{k} \sum_{\nu=1}^{n-1} |\Delta \gamma_{\nu}| + \gamma_{1} \sum_{n=2}^{\infty} n^{k-1} (\Delta \lambda_{n})^{k} \right) =$$

$$= K(k) \left(\sum_{\nu=1}^{\infty} |\Delta \gamma_{\nu}| \sum_{n=\nu+1}^{\infty} n^{k-1} (\Delta \lambda_{n})^{k} + O(1) \right) =$$

$$= K(k) \left(\sum_{\nu=1}^{\infty} |\Delta \gamma_{\nu}| \sum_{n=\nu+1}^{4\nu} n^{k-1} (\Delta \lambda_{n})^{k} + \sum_{\nu=1}^{\infty} |\Delta \gamma_{\nu}| \sum_{n=4\nu+1}^{\infty} n^{k-1} (\Delta \lambda_{n})^{k} \right) \equiv$$

$$\equiv S_{21} + S_{22}.$$

Since $\{\Delta \lambda_n\}$ is non-increasing we have $S_{21} = O(S_1)$.

Applying Lemma 3 again, by (7) and (1), we can see that S_{22} is also finite so, our proof is complete.

PROOF of Theorem 2. Let us denote by $\sigma_n^{(\alpha)}(\lambda)$ the *n*-th (C, α) mean of the series $\sum \lambda_n a_n$. Using the symbols

$$A_n^{(\alpha)} = \binom{n+\alpha}{n} \quad \text{and} \quad L_{n,\nu}^{(\alpha)} = \frac{A_{n-\nu}^{(\alpha)}}{A_n^{(\alpha)}} \cdot \frac{\nu\alpha}{(n+1-\nu)(n+1+\alpha)} \quad (\nu=1,\ldots,n),$$

by Abel's transformation we have that for $n \ge 3$

(10)
$$\sigma_{n}^{(\alpha)}(\lambda) - \sigma_{n-1}^{(\alpha)}(\lambda) = \sum_{v=1}^{n-1} L_{n-1,v}^{(\alpha)} \lambda_{v} a_{v} + \frac{1}{A_{n}^{(\alpha)}} \lambda_{n} a_{n} =$$

$$= \sum_{v=1}^{n-2} \left(\sum_{\mu=1}^{v} \mu a_{\mu} \right) \left(\frac{L_{n-1,v}^{(\alpha)}}{v} \lambda_{v} - \frac{L_{n-1,v+1}^{(\alpha)}}{v+1} \lambda_{v+1} \right) +$$

$$+ \left(\sum_{\mu=1}^{n-1} \mu a_{\mu} \right) \left(\frac{L_{n-1,n-1}^{(\alpha)}}{n-1} \lambda_{n-1} - \frac{\lambda_{n}}{nA_{n}^{(\alpha)}} \right) + \left(\sum_{v=1}^{n} \mu a_{\mu} \right) \frac{\lambda_{n}}{nA_{n}^{(\alpha)}}.$$

A simple computation shows that

(11)

$$\frac{L_{n-1,v}^{(\alpha)}}{v} \lambda_{v} - \frac{L_{n-1,v+1}^{(\alpha)}}{v+1} \lambda_{v+1} = \frac{\alpha}{(n+\alpha) A_{n-1}^{(\alpha)}} \left(\frac{A_{n-v-1}^{(\alpha)}}{n-v} \Delta \lambda_{v} + \frac{(\alpha-1) A_{n-v-2}^{(\alpha)}}{(n-v+1)(n-v)} \lambda_{v+1} \right)$$

and

(12)
$$\frac{L_{n-1,n-1}^{(\alpha)}}{n-1}\lambda_{n-1} - \frac{\lambda_n}{nA_n^{(\alpha)}} = \frac{1}{(n+\alpha)A_{n-1}^{(\alpha)}} \left(\alpha\Delta\lambda_{n-1} + (\alpha-1)\lambda_n\right).$$

Looking at (10), (11) and (12) we get the estimation

(13)
$$\sum_{n=1}^{\infty} n^{k-1} |\sigma_{n}^{(\alpha)}(\lambda) - \sigma_{n-1}^{(\alpha)}(\lambda)|^{k} \leq$$

$$\leq C(\alpha, k) \sum_{n=2}^{\infty} \frac{1}{n^{k\alpha+1}} \left(\sum_{v=1}^{n-1} (n-v)^{\alpha-1} \left| \sum_{\mu=1}^{v} \mu a_{\mu} \right| s \lambda_{v} \right)^{k} +$$

$$+ C^{*}(\alpha, k) \sum_{n=3}^{\infty} \frac{1}{n^{k\alpha+1}} \left(\sum_{v=1}^{n-2} (n-v-1)^{\alpha-2} \left| \sum_{\mu=1}^{v} \mu a_{\mu} \right| \lambda_{v+1} \right)^{k} +$$

$$+ C(\alpha, k) \sum_{n=1}^{\infty} \frac{1}{n^{k\alpha+1}} \left| \sum_{\mu=1}^{n} \mu a_{\mu} \right|^{k} \lambda_{n}^{k} \equiv S_{3} + S_{4} + S_{5}.$$

First we shall consider S_5 . Since

$$S_5 = C(\alpha, k) \sum_{n=1}^{\infty} \frac{\lambda_n^k}{n^{k(\alpha-1)+1}} \left| \frac{1}{n} \sum_{\mu=1}^n \mu a_{\mu} \right|^k,$$

by (3), (4) and Lemma 6 we get that S_5 is finite.

We shall now estimate S_3 . We put $C_{n, v} = (n-v)^{\alpha-1}$ for v < n, $d_n = |\sum_{\mu=1}^n \mu a_{\mu}| \Delta \lambda_n$. $I_n = n^{-k\alpha-1}$ and applying Lemma 2 we have

$$S_3 \leq C(\alpha, k) \sum_{n=2}^{\infty} \left(\frac{1}{n^{k\alpha+1}} \right)^{1-k} \left(\sum_{\nu=n+1}^{\infty} \frac{(\nu-n)^{\alpha-1}}{\nu^{k\alpha+1}} \right)^k \left| \sum_{\mu=1}^n \mu a_{\mu} \right|^k (\Delta \lambda_n)^k$$

348 I. Szalay

and from this a standard computation shows that

$$S_3 \leq C(\alpha, k) \sum_{n=2}^{\infty} \frac{(\Delta \lambda_n)^k}{n^{k(\alpha-1)+1}} \left| \sum_{\mu=1}^n \mu a_{\mu} \right|^k.$$

If we can show that the series

$$\sum_{n=1}^{\infty} \frac{(\Delta \lambda_n)^k}{n^{k(\alpha-2)+1}}$$

is convergent, then by (4) and Lemma 6 we get S_3 is finite. By condition (3) we have

$$\sum_{n=5}^{\infty} \frac{(\Delta \lambda_n)^k}{n^{k(\alpha-2)+1}} \leq \sum_{m=2}^{\infty} (2^{m+1} \Delta \lambda_{2^m})^k \sum_{n=2^{m+1}}^{2^{m+1}} \frac{1}{n^{k(\alpha-1)+1}} \leq$$

$$\leq C(k) \sum_{m=2}^{\infty} \lambda_{2^{m-1}}^k \sum_{n=2^{m-2}+1}^{2^{m-1}} \frac{1}{n^{k(\alpha-1)+1}} \leq C(k) \sum_{n=1}^{\infty} \frac{\lambda_n^k}{n^{k(\alpha-1)+1}} < \infty.$$

It remains to estimate S_4 . Considering (10) and (11) we can choose $C^*(1, k) = 0$ in (13), so we can assume that $-\frac{1}{k} < \alpha < 1$. Putting $C_{n,\nu} = (n-\nu-1)^{\alpha-2}$ for $\nu < n-1$ and zero for $\nu = n-1$, $d_n = |\sum_{n=1}^n \mu a_{\mu}| \lambda_{n+1} l_n = n^{-k\alpha-1}$ and applying Lemma 2 we have

$$S_{4} \leq C(\alpha, k) \sum_{n=3}^{\infty} \left(\frac{1}{n^{k\alpha+1}} \right)^{1-k} \left(\sum_{\nu=n+2}^{\infty} \frac{(\nu-n-1)^{\alpha-2}}{\nu^{k\alpha+1}} \right)^{k} \left| \sum_{\mu=1}^{n} \mu a_{\mu} \right|^{k} \lambda_{n+1}^{k} \leq C(\alpha, k) \sum_{n=3}^{\infty} \frac{1}{n^{k\alpha+1}} \left| \sum_{\mu=1}^{n} \mu a_{\mu} \right|^{k} \lambda_{n+1}^{k} \leq C(\alpha, k) S_{5}.$$

Our proof is complete.

PROOF of Theorem 3. Let

(14)
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x)$$

and let $s_n(x)$ and $\sigma_n(x)$ denote the *n*-th partial sum and *n*-th (C, 1) mean of the Fourier series (14), respectively. We have by Zygmond's theorem ([9], vol. II. p. 184.) that

$$\sum_{\nu=1}^{n} |s_{\nu}(x) - \sigma_{\nu}(x)|^{k} \leq C(x, k) \cdot n$$

almost everywhere. Using the identity

$$s_{\nu}(x) - \sigma_{\nu}(x) = \frac{1}{\nu + 1} \sum_{\mu=1}^{\nu} \mu A_{\mu}(x)$$

by Theorem 2 we get Theorem 3.

References

- H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc., 16 (1941), 215—220.
- [2] H. C. Chow, Theorems on power series and Fourier series, Proc. London Math. Soc., 1 (1951) 206—216.
- [3] S. M. MAZHAR, On |C, 1|_k summability factors of infinite series, *Acta Sci. Math.*, 27 (1966), 67-70.
- [4] B. P. MISHRA, On the absolute Cesaro summability factors of infinite series, Rend. Cir. Mat. Palermo., 14 (1965), 189—194.
- [5] J. NÉMETH, Generalizations of the Hardy-Littlewood inequality, Acta Sci. Math., 32 (1971), 295—299.
- [6] G. I. Sunouchi, On the absolute summability of Fourier series, J. Math. Soc. of Japan., 1 (1949—50), 122—129.
- [7] G. I. SUNOUCHI, On the absolute summability factors, Kodai Math. Sem. Regards, No. 2. (1954).
- [8] I. SZALAY, On the absolute summability of Fourier series, Tohoko Math. Journ. 21 (1969) 523—531.
- [9] A. ZYGMUND, Trigonometric series, Cambridge, 1968.

(Received July 3, 1975.)