On generalized absolute Cesaro summability factors

By ISTVAN SZALAY (Szeged)

Let Za, be a given series with partial sums s5,. By ¢ we denote the n-th
Cesaro means of order « of the sequences {s,}. If the series X nr*~!|o(® —¢\®,[¥
(k=1;a>=—1) is convergent, we say that the series X g, is absolute summable
(C, 2) with index k or simply summable |C, al,.

A sequence {/,} is said to'be a |C, «/, summability factor of the series X a,
if multiplying it term by term with Z,, the factored series is |C, &, summable.

We have the following theorems.

Theorem 1. Let k=1,0=a=1 and let {},} be a positive non-increasing and
convex sequence, {y,} be a positive non-decreasing sequence such that Ay,=O0(y,/n)
(n=1.2, ...;p=nmn+l,...20). If

(1) 2 My, <o
and
(2) 2 ‘t llo.dzi I:l — O(?u)

then the sequence {7} is a |C,a|, summability factor of the series X a,,.
The special case k=1, y,=logn and A,=(logn) '~ * (¢e=0) was proved by
SuNoucHt [7]. Using a result of NEMETH (see Lemma 2) we can prove that

x |s,[*
Svtjow —ot = 0 3 i

so we have the following.

Corollary. If the sequences {J,} and {y,} are satisfying the conditions of
Theorem 1 and

o _Ist

2 yk(E-1)+1 o O(yn)

then the series X/,a, is |C, a|, summable.
The special case a=1 and y,=logn was proved by MAzHAR [3] and MISHRA
[4].



344 I. Szalay

The next theorem gives a result concerning the |C, x|, summability of negative
order u, too.

Theorem 2. Let k=1; —l{cxél and let {4,} be a positive convex sequence

k

such that
e Az
(3) "=Zl hm - oo,
If
n ] v k

(4) 2= 2 wa| = 0@

vl |V p=1

then the sequence {A,} is a |C, a|, summability factor of the series X a,,.
Finally we have two results for Fourier series.

Theorem 3. If {/,} satisfies the conditions of Theorem 2 then {1,} is a |C, «|,
summability factor of Fourier series of any integrable function almost everywhere.

The special case k=1 and x=1 was proved by CHow [l] and SuNocHI [6].
For f(x)€L? we define

] 1/p
o, f)= 05;1:2‘{ flf(x+;'r)+f(x—h)—2f(x)]’dx} :

Theorem 4. Let f(x)eL? (1<=p=2), 1=k<2 and let {u,} be a non-increasing
sequence tending to zero and satisfying the condition

If
Smon(5:1)<=

n=1
; . 1
then the Fourier series of f(x) is summable |C, x|, almost everywhere for a:—;.

The special case k=1 was proved in [8]. The proof of Theorem 4 runs similarly
to that of Theorem I of [8], we only have to use Lemma 1 instead of Lemma 4 of [8],
so we omit the proof of Theorem 4.

We need the following lemmas. Generalizing and a little lit modifying a Chow’s
lemma ([2]. Lemma 4) we obtain

Lemma 1. Let k=1,0=a=1 and let {J,} be a positive sequence such that the
sequence {|A4,|} is') non-increasing. If
S A

&) 2

L <o (140 = (o —of2)
n=

) 44, =An—Ans1
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and
(6) 3 Y AAP IO} <
n=1

then®) the series X J,a, is |C, o, summable.
We require the following inequality of NEMETH ([5]) as

Lemma 2. Let d,=0and 1,=>0 (n=1, 2, ...) be given sequences. J_’f the triangular
matrix M=(C, ) satisfies the following conditions C, ,=0 (v<=n), C, ,=0 (v=n)
and 0=C, ,=C-C,, (Oﬂvbnﬁm) C denotes a positive absolute constant, then

for any k=1

oo n k
2!,[26‘”4] = Cro-pk 3 - *[zfc, ] d=.

n=1 ya=1] n=]
Using the Abel transformation it is easy to prove the following lemmas.

Lemma 3. If k=1 and {b,} is a non-increasing sequence such that 2 b,< =,

n=1
then the series 3 n*~—'bk is convergent and for every v=1,2, ...
a=1
oo oo *
(7 Z - 0[{2!),,}]
n=4v+1 ne=y
hold.
Lemma 4. Let {b,} be a non-increasing sequence such that > b,=<< and

=1
{C,} be a sequence of positive numbers such that nC,=0 LZ" q], where n=1,2,...;
=]
pu=n,n+1, ..,2n If k=1 and

® 3(36) c<r

n=1 “\m=n

then the series > n*bC, is convergent.
n=1
Finally we shall use the following obvious facts as lemmas.
Lemma 5. Let {x,}, {B,} and {0,} be given positive sequences such that {x,}

non-increasing, {p,} non-decreasing. If Z o, .11d0v|=0(1) and Z B,=0(o,)

y=] y=]

then Z a, f,=0(1).
v=1

) If «=0 the condition (6) is superfluous.
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Lemma 6. Let 2,=0 and f,=0 be given sequences. If 2 o,< oo, Citmi1=

n=1

n o
=gy, =Cottn and Z'lﬁ,,=0(n) (B=1,2..;v=1,2,...,2% then 2 af <o
=

n=1

PROOF of Theorem 1.

First using Lemma 5 with o,=2f, B,=n* "¢\ —6®,|¥ and ¢,=y, by (1)
and (2) we obtain (5).

Secondly we use Lemma 5 o,=(44,), B,=n*1o® —6?,|* and g,=n*y,.

By (2) we have that 2”’ p,=0(p,). If we can show that

v=1

©) g’f (A A (nky,)| < o

then, by Lemma 5, we have (6). Finally we apply Lemma 1 and have Theorem 1.
Now we prove (9)

=2°:(AA..H)* Aty = K(K) _zjn*(di..)* |4y, +

+K(Kk) 3 m* (427, = S) +Se.
n=1

The constant K is depending on its argument only.

Using Lemma 4 with b,=A4/, and C,=|4y,|, by (1) and (8) we have that S,
is finite.

Applying Lemma 3 with b,=4/, and C,=|4y,] we get

oo n—1 oo
Se= K@ ( Zn-rant 3 1an)+ 9 Sn-1any) =

= k@ (Z1anl 3 -rany o) =

n=y+1

bt v oo oo
= kO (Srl 3 w-rary+ Sianl 3 w-rant)=

n=v+1 n=4v+1
= Sy +Sa.
Since {44,} is non-increasing we have S, =0(S,).

Applying Lemma 3 again, by (7) and (1), we can see that S,, is also finite so,
our proof is complete.

PROOF of Theorem 2. Let us denote by ¢'® (i) the n-th (C,x) mean of the
series X 4,a,. Using the symbols

+a A2 vat
Am:[" ] F) o NV, p=1, 000 M)y
i 7 and ", v A:” (ﬂ+l —V) (n+l+a) (‘Ir 3 n)
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by Abel’s transformation we have that for n=3

1
(10) @A) -0 (A) = 2 L®, Jia,+—— yIg Ayd, =

n=2 v L(ﬂ) . L(_ <
= 3 (2 pa) (BB -ta)+

347

v=1 \y=
Tt d ) (S na)
n=—1.,n— A e n
[El a ]( —T g ) T\ 2 ) g

A simple computation shows that
(11)

Ll‘la—)l.\' ;L . Lr(rlx—)l’v+l) o [A;:—)v—l (a—])AP—)v—z

v . T T (n+n()A"' n—v " (m—=v+1)(n—
and
(2)

(12) m & ! @ (aA).,, H(@—14,).

n—1 "' AW T n+a)A®

Looking at (10), (11) and (12) we get the estimation

(13) 3 o@D () — @, (W =
n=1
=C(a, k g S =1 A ]k
=C(a, )uéw v=le (n—v) “é;;ta, si, | +
+C*(a, k) 2 S [Z (n—v—1)** Z;,ua ).,H] —+

Z pa, J" S3+8,+S;.

+C(a, k) Z n‘“’“

First we shall consider S;. Since

= X |1a
§; = C(a, k)”g;m ?ng; na,|

by (3), (4) and Lemma 6 we get that S; is finite.
We shall now estimate S5. Weput C, ,=(m—v)*"! for v<n,d,=|J

u=1

I,=n~*~1 and applying Lemma 2 we have

n k
> ua,| (42,)

n=1

5= Ch 3 (-mm £ lk[ e

=n+1

v) Fvs ‘}

Ha, |4,
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and from this a standard computation shows that

oo AA” k
S3 = C( k) 2 nk((: 1+1

If we can show that the series

k

3 a,

= 4Ly

is convergent, then by (4) and Lemma 6 we get S, is finite. By condition (3) we have

= (M) g o IO
né;_"(“_zm = 2 (2 +IA)2 )k 2'2“‘+1 nk(a——-l)+1 =
= & 2’"'1 l i lk
= C(k),,.é;j'z"'",,ﬂmz-'aﬂm = C(k) Z FE-DAT

It remains to estimate S;. Considering (10) and (11) we can choose C*(1, k)=0

. 1 ;
in (13), so we can assume that ——k—-:oc-ﬁ 1. Putting C, ,=(n—v—1)*~2 for v<n—1

and zero for v=n—1,d,=| 2 pa,|2,+, I,=n"""' and applying Lemma 2 we have
p=1

S, = C(a, k) Z[,,x:u]l_i[ > (v__;‘i:l“lll’);]

n+l
v=n+2
oo l n k
=C(a,k) 2 T 2 uay,| ixyq =C(2, k) Ss.
n=3 p=1
Our proof is complete.
Proor of Theorem 3. Let
(14) f(x) ~ %o—+ 2 (a,cosnx+b,sinnx) = > A,(x)
n=1 n=0

and let s,(x) and o,(x) denote the n-th partial sum and »-th (C, 1) mean of the
Fourier series (14), respectively. We have by Zygmond’s theorem ([9), vol. 11. p. 184.)
that

15,6~ 0, @) = C(x, k) -n

almost everywhere. Using the identity

5,() =0, (¥) = —v—}r—lgl 1A, (x)

by Theorem 2 we get Theorem 3.
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