Non-additive ring and module theory II.
% - Categories, ¢ - Functors and % - Morphisms

By B. PAREIGIS (Miinchen)

Consider the example (Cat, X, 1) of a monoidal category. A monoid in this
category is a (small) category ¥ together with functors @ : ¥ X% —% and 7:1-%
(where we use the notation 7 (e)=/) such that the diagrams

commute. This means AR (BRC)=(A®@B)&C for all 4, B,Ce% and A®I=
=A=I®A for all A¢%. These identities are natural transformations in A4, B, C.
Such a category % is called a strictly monoidal category. For the general case the
two diagrams (*) are commutative up to a natural isomorphism and such that the
coherence conditions of § 1. hold. By the coherence theorem of [5] this implies that
all morphisms composed of x: AR (BRC)=(ARB)RC, L:I@A=A, 0:ARI=A,
identities and ® which formally have common domain and codomain are equal.

Now consider an object .# in (Cat, %X, 1) on which a strict monoidal category
% operates in the right. Then .# is a category together with a functor ® : . # X¢—~.#,
such that

MR(CRD)=(MRC)®D forall Mc#, C,Dc¥
and
MI=M forall Mc#.

These identities are natural transformations in M, C, D. Such a category .# will
be called a strict €-category. A useful generalization of this is a é-category # for
an arbitrary monoidal category %. This is a category .# together with a functor
@ . MXE~. 4 and natural isomorphisms fMR(CRD)=(MRC)®D and
oc:M®I=M such that all formal diagrams composed of «, f, @, 4, o, their in-
verses, ® in ¥, and ® with respect to .#, identities, and compositions commute.
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In particular we require the commutativity of the following diagrams:

M®(CR(D® E)) g (M®C)®(DRE)
| MRa I B
M@(C®D)®E) £ (Ma(CoD)® ELLL(MRC)RD)®E

M (I 80) =P -
\ /’3

N

M@C

:
[ ¢

If % is a symmetric monoidal category (which corresponds to the notion of a com-
mutative monoid in Cat), then we also require the commutativity of

Now let us regard the corresponding morphisms. A morphism of monoids in Cat
is a functor F :4—+2 of strictly monoidal categories ¥ and 2, such that

F(COD)=F(C)®F(D)
and
FH=J
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where /€% and Jc2 are the neutral objects. The identities are natural transforma-
tions in C and D. If ¥ and Z are just monoidal categories then we require natural
isomorphisms

:F(CRD)=F(C)RF (D)

(:F(D=J

such that the following diagrams commute:

F(cor) < §0)e §(1) FOE_ 2/0)eT

Flo) }g’

\N 5 ()

F(loc) 2= fle Fy LILO, 10 oo
) ¢ ¢

F(CRMD®E)) > F(O)®F(DE)TD2 7 (C)®(F (D)® F(E))
b F(2) | o
F(CR®D)®E) > F(CoD)eF(E)2ZR(F(C)@ F(D))® F(E))
Such a functor is called a monoidal functor. If € and 2 are symmetric we require
in addition the commutativity of
F(CoD)ZLF(D®C)
} o ‘0
F(C)@F (D)~ F (D)@ 7 (C).

Let .# and A" be right ¢-objects in Cat for a strictly monoidal category €. A ¢-
morphism #:.# ~-A" is a functor such that

FMRC)=FM)3C,

where the identity is a natural transformation in M and C. In the general case of
t-categories 4 and A" for a monoidal category €, a €-functor is a functor
F .M -~ A together with a natural isomorphism

SEFMRIC)=F(M)RC
such that the following diagrams commute:
F(M®(C®D)) : F(M)@(C®D)

v F(P) ' B
F(M@C)®D) L FMC)RDL2L(F(M)®C)@D
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FiMeI) 5 o SiMiel

Finally we introduce natural transformations between monoidal functors, resp.
between ¥-functors. Let #:¥—~2 and %:4 -2 be monoidal functors. A natural
transformation x:# —% is called a monoidal transformation if

.ﬁ'(C@D) F(C)@F (D)
| x t X®x
4(C®D) > 4(C)®%(D)

and
8-’(1)
l T
4D T

A natural transformation :% —~% between %-functors F:.#-A and
G. .M—~N 1s called a €-morphism if

FMRC) L FM)RC
N {YeC
YMRC) L 9M)RC
commutes.
Now we can introduce the notion of a right 4-object in a right ¢-category Z, where
A is a monoid in C. An object McZ together with vy : M@ A—~M is an A-object
if the diagrams
MRARA 2 (MRARAXMEL M A
t M@y, t M
M®A L M

and

ME& Mo 1 Men . mon

VM

sz

M
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commute. It is clear how A-morphisms are to be defined. Thus we get a category
of A-objects 2.

4.1. Lemma Let F:2—~+2" be a %-functor. Then F induces a functor
y“: g“—“g;.

PrROOF. Let (M, vy)€Z,. We define F (M, vy):=(F (M), F'(vy)) where
F'(vy) is the morphism F(M)RA=F (M@ A) =2 F(M). The diagrams

.

W] ] L1
0l v ; 4 o WVae/® A
FMe (AeA)2 (F(Me Ao A x

I ST gl

TiMeA)e A v, )0 A
[
ls(Aan)a 5 (Moh)s A) ————= $(M0A)
| T oqg®A) :
Jre l 5o
No A Tow -— Jl'ﬁ)
and
74 $(Men .
2 d(Me [ —Illeg _ HMe A
n
&V et ¥ ad 3 !
F(% Mo 1) —LMog) _ 200y
id e
Forn 7 Ly

)
commute. Similarly if f:M—N is a morphism in 2, then #(f) is in 2/ since

FM)RAZL2A F(N)® 4

14 IR
FM@A)ZL2D. F(N@ A)
F(vm) 4 b F(vy)

FM)—L—F(N)

commutes. So define F ,(f):=F(f) in 2/, and we get a functor F ,:Z2,~Z/,.
This proof shows already why we had to require certain coherence conditions
for the definition of ¥-functors. The most important property of ¢-functors which
is very similar to properties of exact functors will be discussed later on. First we
need a few additional properties of A-objects in €.
By Theorem 2.2 and the remark following 2.3 Lemma 3 of [12] the following
is a difference cokernel of a contractible pair in %
ABUSM)EEZ Ao M M
for each A-object M in %. In fact only the contraction morphism
MRAQM)): A" AQM ~AR(A®M) is in %, the morphisms of the above
sequence are even in ,¥. So we have a difference cokernel of a (#:,€—~%)-con-
tractible pair in ,%.

10*
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4.2. Theorem. Let F:,€ 36 be a covariant functor. Equivalent are

a) F is a G-functor and F preserves difference cokernels of “U-contractible
pairs.

b) There is a B— A-biobject Q which is A-coflat (which is unique up to an isomor-
phism) such that F =Q® 4 as functors from € to g¥b.

PROOF. Assume that a) holds. Then we have a difference cokernel
FASARM)) = F(ARM) - F(M).
Since # is a %-functor we get a difference cokernel

" o v o &1
FA) (A8 M) =22 7 () @ M T2 7 (M),
By definition of # (4) @ (M in §3 we get a natural isomorphism # (M) = F (4) @ M
with the B—A-biobject F(4)=Q. If Q'@ ,=F then Q'® A>=Q® 44 hence
Q'=Q as B— A-biobjects.
Conversely assume that b) holds. The following commutative diagram in-
dicates that Q® ,:,6—~,% is a %-functor:

(QRUIMNRX =(QAM)X -~ Qe M DX
% 14 IR
0R(AR(M® X)) = Q@(MQX) -~ 03 ,(MX).
The verification of the coherence diagrams for %-functors is left to the reader.

Now let
MZN2p
fi
be a difference cokernel of a #-contractible pair in 4% with contraction g:N—-M
in € and section A:P—N in % such that fig=idy, figfi=rgh, hk=id, and
kh=f,g. Now Q@ preserves the whole situation, so we get a commutative diagram

Qe N Qe = QeN
G@g
ﬁ'
Qe M
Qah Qe Qe h
Q@N
# Qek Qoh Y
Qe P ) - Q7P
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This implies that

03/,
- =0 N2> 0aP

is a difference kokernel of a *?l-contractlble pair [12, 2.3].
A similar diagram is obtained by tensoring with Q@ A on the left. This induces
a commutative diagram.

ORA)RIM=(QRA) N -~ (QBASP
H i W
oM = QN - (0OQ®P
' 4 '
Q@M = QOuN - Q®,P

where all rows and columns are difference cokernels in z%, due to the fact that
fo. f; and h are A-morphisms and that colimits commute with colimits. Hence
O0® 4:46—~5% preserves difference cokernels of #%-contractible pairs.

It seems that the strong property of being a %-functor rarely occurs. But the
following theorem shows that this property is closely related to inner hom functors.
Let us first consider the case ¥=Z—Mod. Let F:,% ;¢ have a right adjoint
G:y6—~ 6. Then F and ¥ preserve colimits resp. limits hence they are additive
functors. Now the natural bijection

s€(F(M),N) = , (M, %(N)) iscomposed of
G: y6(F (M), N) ~ 6(9F (M), %(N))

Qeh

Q®M

and
A%’(tIJM,@’(N)) ] AQC(@’.SF(M), f@(Nj) - j-f(M,fﬁ(N)).

Both maps are homomorphisms of abelian groups since % is an additive functor
and ®M:M~%% (M) is in ,€. Thus a pair of adjoint functors between % and
g6 with €=Z—Mod is automatically such that not only the morphism sets
5¢(# (M), N) and ,€(M,%(N)) are isomorphic in the category of sets but even
the inner hom functors B[?(M) N]and ,[M, % (N)] are isomorphic in ¥=Z—Maod.
Unfortunately this is not true in the general case. However the following theorem
holds

4.3. Theorem. a) Let € be a closed monoidal category and F :,6— 3% and
G:56 —~ € be functors. F is left adjoint to 4 and a €-functor if and only if there
is a natural isomorphism

s[F (M), N] = 4[M,%(N)]

Jor all M€ € and N€g®.

b) Let € be a coclosed monoidal category and F:,6—y€ and %36~ €
be functors. F is right adjoint to % and a €-functor if and only if there is a rramra!
isomorphism

B{(F (M), N) = ,(M,9(N))
Jor all Mc € and N¢€g%.
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Proor. First assume that there is a natural isomorphism
@: y[F (M), N] = 4[M,%(N)].

Then # is left adjoint to % by 6(F (M), N)=z€(F(M)RI N)==
= @G(I, y[F (M), N) =%(I, [M,$(N)))= E(M®I,%(N))= (M, %(N)). Call this
isomorphism ¢. It is clear that ¢ is natural in M and N.

Now define ¢ : F(MRC)=F (M)RC by z6(¢, N) as 36(F(M)RC, N)=
=%(C, slF (M), N))=%(C, M, $(N)))= E(MSC, 9(N))=6(F(M3C), N).
Again ¢ is clearly a natural transformation in M and C.

To check the two properties for a ¢-functor denote by

!&A:A%’(M®C9 M') = g(C's'A["ﬂJ: N’D
Vs (N®C, N’) = 4(C, [N, N’)

the adjointness isomorphisms of 3.10. Then the diagram

Br e ’ D ah
pEC M), N) _— G
A ]
(¢, N) ¥ EiN))
lgt: l_-‘u.c_-\{'.
T2 e » . 5’5‘"5 y M) P g - i o 3 .
F‘*-‘_ﬁ".\.‘")w_. N) e ——— n‘tl.:‘.‘-'t!.,.', N, _L"ALf\-"f@I_lf‘u"-]'
I s l A
Foi N @rr g
it f R TE (i,9) gt Iy ra :
e, gt + M), N = — (1, #.-f_.:gf.x.‘-,‘)

commutes, the outer hexagon by definition of ¢, the lower pentagon by definition of £,
the upper right hand quadrangle since ¢ is a natural transformation and the upper
left hand triangle since all morphisms of the diagram are isomorphisms. Hence
we get a commutative diagram in ;€

HMOT) —b m FiM)o T

o
Fo) 7t

For the second more complicated diagram for ¢-functors observe first from § 3
that we have natural isomorphisms

AIMR®C,M’] = [C, [M,M’]] and [N®C, N’] = [C, [N, NT]
and that the diagram

Fl A0 ]] o~ r ’ 4 1 r
(CeD, ,[M, M]] &2 ,[Meo(CeD), M] ==,
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and the corresponding diagram with respect to % commute. Thus we get a commuta-

tive diagram

AIM@(CBD), 9 (N)] = 4[(M@C)R®D,%(N)] = [D, 4[M®@C,9(N)]]

IR

R
[C®D, y[# (M), N]]

IR

IR

[D,[C, 4[M,%(N)]]]

[

[D,[C, s[# (M), N1]]

IR

s[F(M)@(CBD), N] = 4[(F(M)®C)®D, N] = [D, 4[# (M) ® C, N]].

Observe now the following diagram

AEr*.f@(c@m,\'g(NJJ —= [ceD, , [N, G (N)J]—= [ce D, [5(m),N]]
‘L "E N
g [F(Me(ceD)), N] =BT - L¥ M e (ceD),N]
(F(8), NI 3
r 5'— 2 J 3[ 5 NI
X cooalE N . [EeD,N
a[jv(}msc}ab.m-*?-’—— -_.~-?’-'MGC?-Bfi‘-?='7§-§l’—]g['@“(M}omes.ﬂi

a[(MeC)e D, 4 (N)] [D, zLF(MeC), NITwe—[D, 4[F(M)aC NI

RN P TR

A LM@-c.gu\n)]_. (D,LC,gL F ) NI
\ :I".Zu.A_LN.‘Q_(_'N_".f'J]I

The outer frame commutes, since the previous diagram commutes.

The left quadrangle is commutative since @ is a natural transformation, the
right hand square since /5 is a natural transformation, the three outer pentagons
by the definition of £. Since all morphisms are isomorphisms, the inner pentagon
commutes also. Hence we get

F(M@(CoD)) F(M)®(C®D)
b F P P B
F(MRC)®D): FMRC)RD2L(F(M)RC)®D

commutative. This proves one direction of part a) of the theorem.
Conversely, let # be a %-functor and left adjoint to 4. Then we have iso-
morphisms

€(C, p[F (M), N)) = 4 (F(M)RC,N) = z6(F(M®C),N) =
£ (M®C,%(N)) = %(C, ,[M,%(N)))
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natural in Ce%, M€ ,4 and N€g%. Hence z# (M), N]= M, %(N)] is a natu-
ral isomorphism.
The proof of part b) of the theorem is essentially dual to the proof of part a)

and is left to the reader.

4.4. Corollary: Let F : [€—~3% and G : g€~ € be functors such that there
is a natural isomorphism g[F (M), N]= [[M,%(N)]. Then there is an A-coflat object
Q€ 6 4 (unigue up to a isomorphism) such that

FM)=0®@,M and %(N) =3[0, N]
natural in M resp. N.

Proof: Since # is a ¢-functor and preserves colimits, Theorem 4.2. implies
F(M)=Q® M. By Proposition 3.11 we also get %(N)= 40, N].

If ¥=7Z-Mod we know in the situation of Theorem 4.3 that # is an additive
tunctor. This holds more generally.

4.5. Proposition: Let €=K-Mod with the usual tensor-product. Let F : 6 —~y€
be a €-functor. Then F is K-additive, i.e. for all f, g€ ;,€(M, N), x¢ K we have

F(f+e)=F()+F(g) and F(xf) =xF(f).

ProoF. First show that there is a natural isomorphism #(M S M) F(M) D
¢ .F (M) (natural in M€ %) such that

3 F / r Pl
= Ty / m “2 ? by
o g

for i=1, 2 commute, where ¢; are the i-th injections and p; are the i-th projections
of the direct sum. The isomorphism is given by F(M@® M)zf(M@(K% K))=
=FM)Q(KHK)=F (M) F(M). It is clearly natural in M 6. The commu-
tativity of the first diagram follows from

.
I .r

wl
Py A £ ¥ i
FD = (1) en ol
v d ‘}K M e K\ —g F (1 '} @h
p i B T g qi
&‘;-‘L“ccl"{ *J(.V)m-;g;-
FMeM = 5 (Mo (K& K)) =5 (M o (KOK) S KM &F(M)

The other diagram follows similarly.
The diagrams (=) imply immediately the commutativity of

FiM @s(M)

FiMeM
and  FN L7

IR

Fm)
94 )

FIMBM)IE FHu) @ ¥M)
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Furthermore they imply the commutativity of
FMoM)—ZL20 ___ F(Na N)

1% 104
F(M)aF M) ZLEZE g(N)a F(N).

Hence
F) pe
l \j&(,f@w) ﬂi@.f{N@N)/ TV
Z 5e6) @ 5 S
FiM) @ F(M) Hf)e #(9) = FIN) o FN)

commutes, where the first horizontal arrow is Z(f+2)=F (f)+Z ().
To show that 7 is K-linear, observe that for f€ ,4(M, N) and #€ K the diagram

MRKLZXN®K
R IR
M———N
commutes. Hence the diagram
Ff) o % 7
FM) @{}& ,}a‘(ﬁ/) ® K
I mf@ s ELALA L FEORO_ 2ine Kk I
%«4) — M)

commutes, where the lower horizontal arrow is #(xf)=x7 (f).
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