Non-additive ring and module theory II. Categories, Functors and Morphisms

By B. PAREIGIS (München)

Consider the example (Cat, \times , 1) of a monoidal category. A monoid in this category is a (small) category \mathscr{C} together with functors $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$ and $\mathscr{T} : \mathbf{1} \to \mathscr{C}$ (where we use the notation $\mathscr{T}(e) = I$) such that the diagrams

commute. This means $A \otimes (B \otimes C) = (A \otimes B) \otimes C$ for all $A, B, C \in \mathscr{C}$ and $A \otimes I = A = I \otimes A$ for all $A \in \mathscr{C}$. These identities are natural transformations in A, B, C. Such a category \mathscr{C} is called a *strictly monoidal category*. For the general case the two diagrams (*) are commutative up to a natural isomorphism and such that the coherence conditions of § 1. hold. By the coherence theorem of [5] this implies that all morphisms composed of $\alpha: A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$, $\lambda: I \otimes A \cong A$, $\varrho: A \otimes I \cong A$, identities and \otimes which formally have common domain and codomain are equal.

Now consider an object \mathcal{M} in $(Cat, \times, 1)$ on which a strict monoidal category \mathscr{C} operates in the right. Then \mathcal{M} is a category together with a functor $\otimes : \mathcal{M} \times \mathscr{C} \to \mathcal{M}$, such that

$$M \otimes (C \otimes D) = (M \otimes C) \otimes D$$
 for all $M \in \mathcal{M}$, $C, D \in \mathcal{C}$

and

$$M \otimes I = M$$
 for all $M \in \mathcal{M}$.

These identities are natural transformations in M, C, D. Such a category \mathcal{M} will be called a *strict C-category*. A useful generalization of this is a \mathcal{C} -category \mathcal{M} for an arbitrary monoidal category \mathcal{C} . This is a category \mathcal{M} together with a functor $\otimes : \mathcal{M} \times \mathcal{C} \rightarrow \mathcal{M}$ and natural isomorphisms $\beta : \mathcal{M} \otimes (C \otimes D) \cong (\mathcal{M} \otimes C) \otimes D$ and $\sigma : \mathcal{M} \otimes I \cong \mathcal{M}$ such that all formal diagrams composed of $\alpha, \beta, \sigma, \lambda, \varrho$, their inverses, \otimes in \mathcal{C} , and \otimes with respect to \mathcal{M} , identities, and compositions commute.

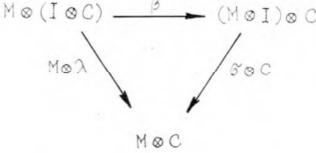
In particular we require the commutativity of the following diagrams:

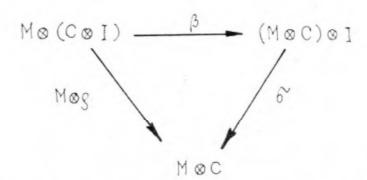
$$M \otimes (C \otimes (D \otimes E)) \xrightarrow{\beta} (M \otimes C) \otimes (D \otimes E)$$

$$\downarrow M \otimes \alpha \qquad \qquad \downarrow \beta$$

$$M \otimes ((C \otimes D) \otimes E) \xrightarrow{\beta} (M \otimes (C \otimes D)) \otimes E \xrightarrow{\beta \otimes E} ((M \otimes C) \otimes D) \otimes E$$

$$M \otimes (I \otimes C) \xrightarrow{\beta} (M \otimes I) \otimes C$$





If $\mathscr C$ is a symmetric monoidal category (which corresponds to the notion of a commutative monoid in Cat), then we also require the commutativity of

$$M \otimes (I \otimes I) \xrightarrow{M \otimes \tau} M \otimes (I \otimes I)$$

$$\beta \qquad \qquad \downarrow \beta$$

$$(M \otimes I) \otimes I$$

Now let us regard the corresponding morphisms. A morphism of monoids in Cat is a functor $\mathscr{F}:\mathscr{C}\to\mathscr{D}$ of strictly monoidal categories \mathscr{C} and \mathscr{D} , such that

$$\mathscr{F}(C \otimes D) = \mathscr{F}(C) \otimes \mathscr{F}(D)$$

 $\mathscr{F}(I) = J$

and

where $I \in \mathscr{C}$ and $J \in \mathscr{D}$ are the neutral objects. The identities are natural transformations in C and D. If \mathscr{C} and \mathscr{D} are just monoidal categories then we require natural isomorphisms

$$\delta \colon \mathscr{F}(C \otimes D) \cong \mathscr{F}(C) \otimes \mathscr{F}(D)$$

 $\zeta \colon \mathscr{F}(I) \cong J$

such that the following diagrams commute:

Such a functor is called a *monoidal functor*. If $\mathscr C$ and $\mathscr D$ are symmetric we require in addition the commutativity of

$$\mathcal{F}(C \otimes D) \xrightarrow{\mathcal{F}(\gamma)} \mathcal{F}(D \otimes C)
\downarrow \delta \qquad \qquad \downarrow \delta
\mathcal{F}(C) \otimes \mathcal{F}(D) \xrightarrow{\gamma} \mathcal{F}(D) \otimes \mathcal{F}(C).$$

Let \mathcal{M} and \mathcal{N} be right \mathscr{C} -objects in Cat for a strictly monoidal category \mathscr{C} . A \mathscr{C} -morphism $\mathscr{F}: \mathcal{M} \to \mathcal{N}$ is a functor such that

$$\mathcal{F}(M \otimes C) = \mathcal{F}(M) \otimes C$$

where the identity is a natural transformation in M and C. In the general case of \mathscr{C} -categories \mathscr{M} and \mathscr{N} for a monoidal category \mathscr{C} , a \mathscr{C} -functor is a functor $\mathscr{F}: \mathscr{M} \to \mathscr{N}$ together with a natural isomorphism

$$\xi : \mathscr{F}(M \otimes C) \cong \mathscr{F}(M) \otimes C$$

such that the following diagrams commute:

$$\mathcal{F}\big(M \otimes (C \otimes D)\big) \longrightarrow \xi \qquad \mathcal{F}(M) \otimes (C \otimes D)$$

$$\downarrow \mathcal{F}(\beta) \qquad \qquad \downarrow \beta$$

$$\mathcal{F}\big((M \otimes C) \otimes D\big) \stackrel{\xi}{\to} \mathcal{F}(M \otimes C) \otimes D \stackrel{\xi \otimes D}{\to} \big(\mathcal{F}(M) \otimes C\big) \otimes D$$

$$\mathcal{F}(M \otimes I) \xrightarrow{\xi} \mathcal{F}(M) \otimes I$$

$$\mathcal{F}(G) \qquad \qquad \mathcal{F}(M)$$

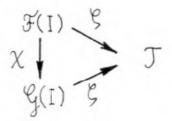
Finally we introduce natural transformations between monoidal functors, resp. between \mathscr{C} -functors. Let $\mathscr{F}:\mathscr{C}\to\mathscr{D}$ and $\mathscr{G}:\mathscr{C}\to\mathscr{D}$ be monoidal functors. A natural transformation $\chi:\mathscr{F}\to\mathscr{G}$ is called a monoidal transformation if

$$\mathcal{F}(C \otimes D) \stackrel{\delta}{\to} \mathcal{F}(C) \otimes \mathcal{F}(D)$$

$$\downarrow \chi \qquad \qquad \downarrow \chi \otimes \chi$$

$$\mathcal{G}(C \otimes D) \stackrel{\delta}{\to} \mathcal{G}(C) \otimes \mathcal{G}(D)$$

and



commute.

A natural transformation $\psi: \mathcal{F} \to \mathcal{G}$ between \mathscr{C} -functors $\mathcal{F}: \mathcal{M} \to \mathcal{N}$ and $\mathcal{G}: \mathcal{M} \to \mathcal{N}$ is called a \mathscr{C} -morphism if

$$\mathcal{F}(M \otimes C) \stackrel{\xi}{\to} \mathcal{F}(M) \otimes C$$

$$+ \psi \qquad \qquad + \psi \otimes C$$

$$\mathcal{G}(M \otimes C) \stackrel{\xi}{\to} \mathcal{G}(M) \otimes C$$

commutes.

Now we can introduce the notion of a right A-object in a right C-category \mathcal{D} , where A is a monoid in C. An object $M \in \mathcal{D}$ together with $v_M : M \otimes A \to M$ is an A-object if the diagrams

$$M \otimes (A \otimes A) \stackrel{\beta}{\cong} (M \otimes A) \otimes A \xrightarrow{\nu_M \otimes A} M \otimes A + M \otimes \mu_A + \nu_M$$

$$M \otimes A \xrightarrow{\nu_M} M$$

and

$$M \stackrel{\text{L}}{=} M \otimes I \xrightarrow{M \otimes n} M \otimes A$$

$$id_{M} \downarrow^{p_{M}}$$

commute. It is clear how *A-morphisms* are to be defined. Thus we get a category of *A*-objects \mathcal{D}_A .

4.1. **Lemma** Let $\mathcal{F}: \mathcal{D} \to \mathcal{D}'$ be a C-functor. Then \mathcal{F} induces a functor $\mathcal{F}_A: \mathcal{D}_A \to \mathcal{D}_A'$.

PROOF. Let $(M, v_M) \in \mathcal{D}_A$. We define $\mathscr{F}_A(M, v_M) := (\mathscr{F}(M), \mathscr{F}'(v_M))$ where $\mathscr{F}'(v_M)$ is the morphism $\mathscr{F}(M) \otimes A \cong \mathscr{F}(M \otimes A) \xrightarrow{\mathscr{F}(v_M)} \mathscr{F}(M)$. The diagrams

and

$$\mathcal{F}(M) \circ I \xrightarrow{\mathcal{F}(M) \circ 2} \mathcal{F}(M) \circ A$$

$$\mathcal{F}(M) \cong \mathcal{F}(M \circ I) \xrightarrow{\mathcal{F}(M \circ 2)} \mathcal{F}(M \circ A)$$

$$\mathcal{F}(M) \cong \mathcal{F}(M)$$

$$\mathcal{F}(M) \cong \mathcal{F}(M)$$

commute. Similarly if $f: M \to N$ is a morphism in \mathscr{D}_A then $\mathscr{F}(f)$ is in \mathscr{D}'_A since

$$\mathcal{F}(M) \otimes A \xrightarrow{\mathcal{F}(f) \otimes A} \mathcal{F}(N) \otimes A$$

$$\parallel \mathbb{R} \qquad \qquad \parallel \mathbb{R}$$

$$\mathcal{F}(M \otimes A) \xrightarrow{\mathcal{F}(f \otimes A)} \mathcal{F}(N \otimes A)$$

$$\mathcal{F}(\nu_M) \downarrow \qquad \qquad \downarrow \mathcal{F}(\nu_N)$$

$$\mathcal{F}(M) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(N)$$

commutes. So define $\mathscr{F}_A(f) := \mathscr{F}(f)$ in \mathscr{D}'_A and we get a functor $\mathscr{F}_A : \mathscr{D}_A \to \mathscr{D}'_A$. This proof shows already why we had to require certain coherence conditions for the definition of \mathscr{C} -functors. The most important property of \mathscr{C} -functors which is very similar to properties of exact functors will be discussed later on. First we need a few additional properties of A-objects in \mathscr{C} .

By Theorem 2.2 and the remark following 2.3 Lemma 3 of [12] the following is a difference cokernel of a contractible pair in &

$$A \otimes (A \otimes M) \xrightarrow{(\mu_A \otimes M) \circ \alpha} A \otimes M \xrightarrow{\nu_M} M$$

for each A-object M in \mathscr{C} . In fact only the contraction morphism $(\eta \otimes (A \otimes M)) \cdot \lambda^{-1} : A \otimes M \to A \otimes (A \otimes M)$ is in \mathscr{C} , the morphisms of the above sequence are even in ${}_{A}\mathscr{C}$. So we have a difference cokernel of a $(\mathscr{U}: {}_{A}\mathscr{C} \to \mathscr{C})$ -contractible pair in ${}_{A}\mathscr{C}$.

4.2. Theorem. Let $\mathcal{F}:_{A}\mathscr{C} \to_{B}\mathscr{C}$ be a covariant functor. Equivalent are

a) F is a C-functor and F preserves difference cokernels of U-contractible pairs.

b) There is a B-A-biobject Q which is A-coflat (which is unique up to an isomorphism) such that $\mathscr{F} \cong Q \otimes_A$ as functors from ${}_A\mathscr{C}$ to ${}_B\mathscr{C}$.

PROOF. Assume that a) holds. Then we have a difference cokernel

$$\mathscr{F}(A \otimes (A \otimes M)) = \mathscr{F}(A \otimes M) \to \mathscr{F}(M).$$

Since F is a C-functor we get a difference cokernel

$$\mathscr{F}(A)\otimes (A\otimes M)\xrightarrow{(\mathscr{F}'(\mu_A)\otimes M)\circ\alpha} \mathscr{F}(A)\otimes M\xrightarrow{\mathscr{F}(\nu_M)\circ\xi^{-1}} \mathscr{F}(M).$$

By definition of $\mathscr{F}(A) \otimes_A M$ in §3 we get a natural isomorphism $\mathscr{F}(M) \cong \mathscr{F}(A) \otimes_A M$ with the B-A-biobject $\mathscr{F}(A) = Q$. If $Q' \otimes_A \cong \mathscr{F}$ then $Q' \otimes_A A \cong Q \otimes_A A$ hence $Q' \cong Q$ as B-A-biobjects.

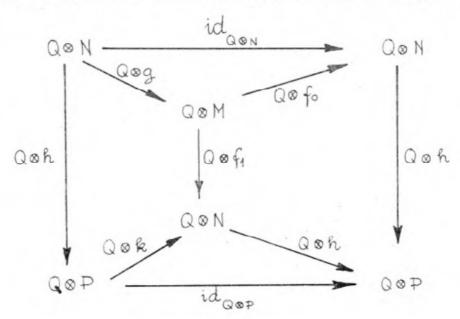
Conversely assume that b) holds. The following commutative diagram indicates that $Q \otimes_A : {}_A \mathscr{C} \to_B \mathscr{C}$ is a \mathscr{C} -functor:

$$\begin{array}{ccc} \big(Q \otimes (A \otimes M)\big) \otimes X \Rightarrow (Q \otimes M) \otimes X \rightarrow (Q \otimes_A M) \otimes X \\ & & & & & & & & \\ \mathbb{R} & & & & & & & \\ Q \otimes \big(A \otimes (M \otimes X)\big) \Rightarrow Q \otimes (M \otimes X) \rightarrow Q \otimes_A (M \otimes X). \end{array}$$

The verification of the coherence diagrams for C-functors is left to the reader. Now let

$$M \stackrel{f_0}{\Longrightarrow} N \stackrel{h}{\longrightarrow} P$$

be a difference cokernel of a \mathscr{U} -contractible pair in $_{A}\mathscr{C}$ with contraction $g:N\to M$ in \mathscr{C} and section $k:P\to N$ in \mathscr{C} such that $f_0g=id_N$, $f_1gf_0=f_1gf_1$, $hk=id_P$ and $kh=f_1g$. Now $Q\otimes$ preserves the whole situation, so we get a commutative diagram



This implies that

$$Q \otimes M \xrightarrow{Q \otimes f_0} Q \otimes N \xrightarrow{Q \otimes h} Q \otimes P$$

is a difference kokernel of a *U*-contractible pair [12, 2.3].

A similar diagram is obtained by tensoring with $Q \otimes A$ on the left. This induces a commutative diagram.

$$(Q \otimes A) \otimes M \Rightarrow (Q \otimes A) \otimes N \rightarrow (Q \otimes A) \otimes P$$

$$\downarrow \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \downarrow$$

$$Q \otimes M \Rightarrow Q \otimes N \rightarrow Q \otimes P$$

$$\downarrow \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Q \otimes_A M \Rightarrow Q \otimes_A N \rightarrow Q \otimes_A P$$

where all rows and columns are difference cokernels in $_{B}\mathscr{C}$, due to the fact that f_{0} , f_{1} and h are A-morphisms and that colimits commute with colimits. Hence

 $Q \otimes_A :_A \mathscr{C} \to_B \mathscr{C}$ preserves difference cokernels of \mathscr{U} -contractible pairs.

It seems that the strong property of being a \mathscr{C} -functor rarely occurs. But the following theorem shows that this property is closely related to inner hom functors. Let us first consider the case $\mathscr{C} = \mathbb{Z} - \text{Mod}$. Let $\mathscr{F}:_{A}\mathscr{C} \to_{B}\mathscr{C}$ have a right adjoint $\mathscr{G}:_{B}\mathscr{C} \to_{A}\mathscr{C}$. Then \mathscr{F} and \mathscr{G} preserve colimits resp. limits hence they are additive functors. Now the natural bijection

$${}_{B}\mathscr{C}(\mathscr{F}(M),N) \cong {}_{A}\mathscr{C}(M,\mathscr{G}(N))$$
 is composed of $\mathscr{G}: {}_{B}\mathscr{C}(\mathscr{F}(M),N) \to {}_{A}\mathscr{C}(\mathscr{GF}(M),\mathscr{G}(N))$

and

$${}_A\mathscr{C}\big(\Phi M,\mathscr{G}(N)\big)\colon {}_A\mathscr{C}\big(\mathscr{GF}(M),\mathscr{G}(N)\big)\to {}_A\mathscr{C}\big(M,\mathscr{G}(N)\big).$$

Both maps are homomorphisms of abelian groups since \mathscr{G} is an additive functor and $\Phi M: M \to \mathscr{GF}(M)$ is in ${}_{A}\mathscr{C}$. Thus a pair of adjoint functors between ${}_{A}\mathscr{C}$ and ${}_{B}\mathscr{C}$ with $\mathscr{C} = \mathbf{Z} - \mathrm{Mod}$ is automatically such that not only the morphism sets ${}_{B}\mathscr{C}(\mathscr{F}(M), N)$ and ${}_{A}\mathscr{C}(M, \mathscr{G}(N))$ are isomorphic in the category of sets but even the inner hom functors ${}_{B}[\mathscr{F}(M), N]$ and ${}_{A}[M, \mathscr{G}(N)]$ are isomorphic in $\mathscr{C} = \mathbf{Z} - \mathrm{Mod}$. Unfortunately this is not true in the general case. However the following theorem holds

4.3. **Theorem.** a) Let $\mathscr C$ be a closed monoidal category and $\mathscr F:_A\mathscr C\to_B\mathscr C$ and $\mathscr G:_B\mathscr C\to_A\mathscr C$ be functors. $\mathscr F$ is left adjoint to $\mathscr G$ and a $\mathscr C$ -functor if and only if there is a natural isomorphism

$$_{B}[\mathcal{F}(M),N]\cong _{A}[M,\mathcal{G}(N)]$$

for all $M \in_{A} \mathscr{C}$ and $N \in_{B} \mathscr{C}$.

b) Let \mathscr{C} be a coclosed monoidal category and $\mathscr{F}:_A\mathscr{C} \to_B\mathscr{C}$ and $\mathscr{G}:_B\mathscr{C} \to_A\mathscr{C}$ be functors. \mathscr{F} is right adjoint to \mathscr{G} and a \mathscr{C} -functor if and only if there is a natural isomorphism

$$_{B}\langle \mathscr{F}(M), N \rangle \cong {}_{A}\langle M, \mathscr{G}(N) \rangle$$

for all $M \in_{A} \mathscr{C}$ and $N \in_{B} \mathscr{C}$.

358 B. Pareigis

PROOF. First assume that there is a natural isomorphism

$$\Phi:_{R}[\mathscr{F}(M),N]\cong{}_{A}[M,\mathscr{G}(N)].$$

Then \mathscr{F} is left adjoint to \mathscr{G} by ${}_{B}\mathscr{C}(\mathscr{F}(M),N) \cong {}_{B}\mathscr{C}(\mathscr{F}(M)\otimes I,N) \cong \mathscr{C}(I,{}_{B}[\mathscr{F}(M),N]) \cong \mathscr{C}(I,{}_{A}[M,\mathscr{G}(N)]) \cong {}_{A}\mathscr{C}(M\otimes I,\mathscr{G}(N)) \cong {}_{A}\mathscr{C}(M,\mathscr{G}(N))$. Call this isomorphism φ . It is clear that φ is natural in M and N.

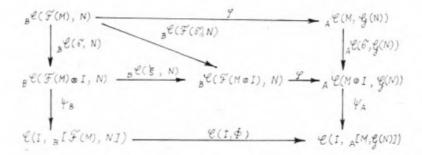
Now define $\xi : \mathscr{F}(M \otimes C) \cong \mathscr{F}(M) \otimes C$ by ${}_{B}\mathscr{C}(\xi, N)$ as ${}_{B}\mathscr{C}(\mathscr{F}(M) \otimes C, N) \cong \mathscr{C}(C, {}_{B}[\mathscr{F}(M), N]) \cong \mathscr{C}(C, {}_{A}[M, \mathscr{G}(N)]) \cong {}_{A}\mathscr{C}(M \otimes C, \mathscr{G}(N)) \cong {}_{B}\mathscr{C}(\mathscr{F}(M \otimes C), N)$. Again ξ is clearly a natural transformation in M and C.

To check the two properties for a C-functor denote by

$$\psi_A: {}_A\mathscr{C}(M \otimes C, M') \cong \mathscr{C}(C, {}_A[M, N'])$$

$$\psi_B: {}_B\mathscr{C}(N \otimes C, N') \cong \mathscr{C}(C, {}_B[N, N'])$$

the adjointness isomorphisms of 3.10. Then the diagram



commutes, the outer hexagon by definition of φ , the lower pentagon by definition of ξ , the upper right hand quadrangle since φ is a natural transformation and the upper left hand triangle since all morphisms of the diagram are isomorphisms. Hence we get a commutative diagram in ${}_{B}\mathscr{C}$

$$\mathcal{F}(M \otimes I) \xrightarrow{\xi} \mathcal{F}(M) \otimes I$$
 $\mathcal{F}(M)$

For the second more complicated diagram for \mathscr{C} -functors observe first from § 3 that we have natural isomorphisms

$$_A[M\otimes C,M']\cong \left[C,_A[M,M']\right]$$
 and $_B[N\otimes C,N']\cong \left[C,_B[N,N']\right]$ and that the diagram

$$[C \otimes D, A[M, M']] \cong A[M \otimes (C \otimes D), M'] \cong A[(M \otimes C) \otimes D, M']$$

$$[D, [C, A[M, M']]] \cong [D, A[M \otimes C, M']]$$

and the corresponding diagram with respect to Be commute. Thus we get a commutative diagram

$${}_{A}[M \otimes (C \otimes D), \mathcal{G}(N)] \cong {}_{A}[(M \otimes C) \otimes D, \mathcal{G}(N)] \cong [D, {}_{A}[M \otimes C, \mathcal{G}(N)]]$$

$$[C \otimes D, {}_{A}[M, \mathcal{G}(N)]] \longrightarrow [D, [C, {}_{A}[M, \mathcal{G}(N)]]]$$

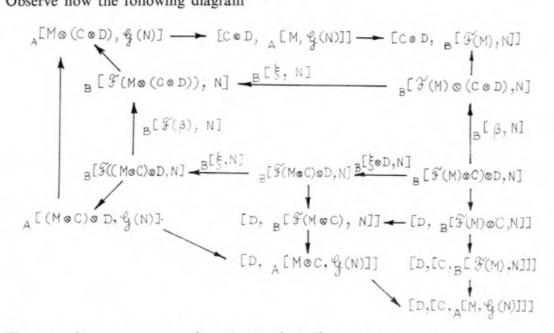
$$[C \otimes D, {}_{B}[\mathcal{F}(M), N]] \longrightarrow [D, [C, {}_{B}[\mathcal{F}(M), N]]]$$

$$[R]$$

$$[D, [C, {}_{B}[\mathcal{F}(M), N]]$$

$$[R]$$

Observe now the following diagram



The outer frame commutes, since the previous diagram commutes.

The left quadrangle is commutative since Φ is a natural transformation, the right hand square since ψ_B is a natural transformation, the three outer pentagons by the definition of ξ . Since all morphisms are isomorphisms, the inner pentagon commutes also. Hence we get

commutative. This proves one direction of part a) of the theorem.

Conversely, let F be a C-functor and left adjoint to G. Then we have isomorphisms

$$\mathscr{C}(C, {}_{B}[\mathscr{F}(M), N]) \cong {}_{B}\mathscr{C}(\mathscr{F}(M) \otimes C, N) \cong {}_{B}\mathscr{C}(\mathscr{F}(M \otimes C), N) \cong$$

$${}_{A}\mathscr{C}(M \otimes C, \mathscr{G}(N)) \cong \mathscr{C}(C, {}_{A}[M, \mathscr{G}(N)])$$

natural in $C \in \mathcal{C}$, $M \in_A \mathcal{C}$ and $N \in_B \mathcal{C}$. Hence $_B[\mathcal{F}(M), N] \cong_A [M, \mathcal{G}(N)]$ is a natural isomorphism.

The proof of part b) of the theorem is essentially dual to the proof of part a) and is left to the reader.

4.4. Corollary: Let $\mathcal{F}: {}_{A}\mathcal{C} \to {}_{B}\mathcal{C}$ and $\mathcal{G}: {}_{B}\mathcal{C} \to {}_{A}\mathcal{C}$ be functors such that there is a natural isomorphism ${}_{B}[\mathcal{F}(M), N] \cong {}_{A}[M, \mathcal{G}(N)]$. Then there is an A-coflat object $Q \in {}_{B}\mathcal{C}_{A}$ (unique up to a isomorphism) such that

$$\mathscr{F}(M) \cong Q \otimes_A M$$
 and $\mathscr{G}(N) \cong {}_{B}[Q, N]$

natural in M resp. N.

Proof: Since \mathscr{F} is a \mathscr{C} -functor and preserves colimits, Theorem 4.2. implies $\mathscr{F}(M) \cong Q \otimes_A M$. By Proposition 3.11 we also get $\mathscr{G}(N) \cong_B [Q, N]$.

If $\mathscr{C}=\mathbb{Z}$ -Mod we know in the situation of Theorem 4.3 that \mathscr{F} is an additive functor. This holds more generally.

4.5. **Proposition:** Let $\mathscr{C} = K$ -Mod with the usual tensor-product. Let $\mathscr{F} : {}_{A}\mathscr{C} \rightarrow {}_{B}\mathscr{C}$ be a \mathscr{C} -functor. Then \mathscr{F} is K-additive, i.e. for all $f, g \in {}_{A}\mathscr{C}(M, N), \varkappa \in K$ we have

$$\mathscr{F}(f+g) = \mathscr{F}(f) + \mathscr{F}(g)$$
 and $\mathscr{F}(\varkappa f) = \varkappa \mathscr{F}(f)$.

PROOF. First show that there is a natural isomorphism $\mathscr{F}(M \oplus M) \cong \mathscr{F}(M) \oplus \mathscr{F}(M)$ (natural in $M \in_{A} \mathscr{C}$) such that

for i=1, 2 commute, where q_i are the *i*-th injections and p_i are the *i*-th projections of the direct sum. The isomorphism is given by $\mathscr{F}(M \oplus M) \cong \mathscr{F}(M \otimes (K \oplus K)) \cong \mathscr{F}(M) \otimes (K \oplus K) \cong \mathscr{F}(M) \oplus \mathscr{F}(M)$. It is clearly natural in $M \in_A \mathscr{C}$. The commutativity of the first diagram follows from

$$\begin{array}{c|c} & id_{\mathcal{J}(M)} & & \mathcal{F}(M) \\ \hline & & & & & & & & & & & & & & & & \\ \hline & \mathcal{F}(q_i) & & \mathcal{F}(M \otimes K) & \cong & \mathcal{F}(M) \otimes K & & & & & & \\ \hline & \mathcal{F}(M \otimes q_i) & & & \mathcal{F}(M) \otimes q_i & & & & & & \\ \hline & \mathcal{F}(M \oplus M) \cong \mathcal{F}(M \otimes (K \oplus K)) \cong \mathcal{F}(M) \otimes (K \oplus K) \cong \mathcal{F}(M) \oplus \mathcal{F}(M) \end{array}$$

The other diagram follows similarly.

The diagrams (*) imply immediately the commutativity of

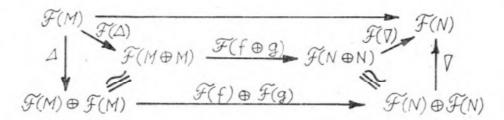
Furthermore they imply the commutativity of

$$\mathcal{F}(M \oplus M) \xrightarrow{\mathcal{F}(f \oplus g)} \mathcal{F}(N \oplus N)$$

$$\parallel \mathbb{R}$$

$$\mathcal{F}(M) \oplus \mathcal{F}(M) \xrightarrow{\mathcal{F}(f) \oplus \mathcal{F}(g)} \mathcal{F}(N) \oplus \mathcal{F}(N).$$

Hence



commutes, where the first horizontal arrow is $\mathscr{F}(f+g)=\mathscr{F}(f)+\mathscr{F}(g)$. To show that \mathscr{F} is K-linear, observe that for $f\in_{A}\mathscr{C}(M,N)$ and $\varkappa\in K$ the diagram

commutes. Hence the diagram

$$\mathcal{F}(M) \otimes K$$
 $\mathcal{F}(M) \otimes K$
 $\mathcal{F}(M) \otimes K$

commutes, where the lower horizontal arrow is $\mathcal{F}(xf) = x\mathcal{F}(f)$.

Bibliography

B. Pareigis, Non-additive Ring and Module Theory I. General Theory of Monoids. *Publ. Math.* (Debrecen), this vol. 189—204.

(Received November 20, 1975.)