On Cauchy’s nucleus
By A. GRZASLEWICZ, Z. POWAZKA and J. TABOR (Cracow)

Let G and H be arbitrary groups (written additively) and f: G- H an arbitrary
function. Let us denote

Ny ={x€G: ¥_(f(x+y) =fD)+/0)}-

The set N, will be called a Cauchy nucleus. This set is empty or it is a subgroup of G
(cf. [1] Lemma 2 p. 313).Y)
The following problem has been put forward at the symposium on Functional
Equations in Debrecen in 1973.
Does there exist for every groups G, H and every subgroup S of the group G a func-
tion f:G—~H such that N,=S8.%)

We are going to solve this problem in the present paper.

Theorem 1. Let G be an arbitrary group and H an arbitrary group such that
2m#0 for some meH. Then for every subgroup S of the group G there exists a func-
tion f:G—~H such that N;=S.

ProOF. Let us put

0 for x€S,
= {m for x€G\S.
We have
p f&x+y)=0=f(x)+f(y) for x,y€ S
an

fx+y)=m=0+m=f(x)+f(y) for x€S, y€G\S.

Thus SCN I
Let us consider an arbitrary x€¢G\ S. Then —x€G\ S and consequently, from
the definition of the function f, we obtain

0=/(0) =f(x—x) # f(x)+f(—=x) = m+m = 2m.

It means that x¢ N,. Hence S=N,, which completes the proof.
Theorem 2. Let G be an arbitrary group and S its subgroup such that for every
XEG\ S there exists yeG\ S such that x+ycG\S. Let H be an arbitrary non-

1) It has been proved in [1] p. 313 that the set {y€G: . (f(x+»)=f(x)+f(»)} is empty
xe

or it is a subgroup of G. Proof for the set N; can be realized in the similar way.
®) Genuinely, the problem has been formulated for G=H.
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trivial group, i.e. such that card H>1. Then there exists a function f: G—~H such
that N J'=S°

PrROOF. There exists an element a€ H such that «=0. We put

0 for x€8,
Hal= {a for, x € G\S.
We have
" fx+y)=0=f(x)+f(y) for x€S, ye€S.
an

f(x+y)=a=0+a=f(x)+f(y) for x€S, yeG\S

This proves that SCN,. If G=3S, then the proof is complete. Suppose that S=G.
Let us consider an arbitrary element x€ G\ S. By the assumption there exists y€ G\ S
such that x+y€G\ S. Consequently, we have

flx+y) =a # a+a = f(x)+f(y).

Thus x4 N,. It proves that ' N;=S, which completes the proof.
The assumption on the subgroup S in Theorem 2 can be replaced by a better
known condition. We shall show it in the following

Theorem 3. Let G be an arbitrary group and S its arbitrary subgroup. The follow-
ing statements are equivalent:
(A) For every xcG\ S there exists yEG\.S such that x+yeG\S,
(B) The index of the subgroup S in the group G is different from two.

Proor. If index S equals two, then x+y€ S for every xeG\ S, yeG\S. It
proves that condition (A) implies condition (B). Let us suppose for the converse
implication that condition (A) does not hold. It means that there exists x,£ G\ S
such that x,+ y€ S for every y€G\ S. But if yeG\ S, then also —yeG\ S. Con-
sequently, we have for every y€G\ S: x,—y€S, i.e. y€S+x,. It proves that G\ S
is a right coset of G with respect to subgroup S. Hence the index of S equals two,
which completes the proof.

Theorems 1 and 2 do not solve the considered problem only in the case when
index S equals two and 2x=0 for every x€H. In thls case the answer to the set
question may be negative.

In the next theorem we shall use the following result proved in [2] (Corollary 1).

Lemma 1. (cf. [2] Corollary 1). Let G, H be arbitrary groups and let S be a sub-
group of G. The general solution of the functional equation?®)

(1) Jx+y) =f(x)+f(y) for x€S, ye€G,
where f: G—+H is the looked for function, has the following form:
(2) f(x) = gx—u)+h(u) for x¢€ S+U, uel,
where

¥) The following functional equation has been solved in note [2] f(x@®y)=f(x)®&f(y) for
xcG, y€S. Equation (1) can be reduced to this equation by putting y®x=x+y.
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g: S—H is an arbitrary homomorphism, UC G is an arbitrary selector of the family
{S+x}eq i.e. UN{S+x} is a one-element set for every x€G,
h: U-~H is an arbitrary function satisfying condition

(3) h(ug) = g(ug) for {u}=UNS.

Lemma 2. Let H be a group. If 2x=0 for every x€ H then the group H is abelian.
The proof is obvious.

Theorem 4. Let G, H be groups and let 2m=0 for every mc H. Let S be a sub-
group of G of the index two. Then the following statements are equivalent:
(C) There exists a function f:G-~H such that N;=S,
(D) There exists a normal subgroup T of the group S such that the group S|T is
isomorphic to some subgroup H and for every x€G\S there exists ycG\.S such that

(4) x+y—x—y ¢ 7T,
or there exist yeG\ S, u€G\ S such that
(5) x—u+y—u—x¢T.

PrROOF. Let us consider an arbitrary solution of the functional equatlon 1),
i.e. a function f: G—+H of the form (2), where U, u,, u have the meanings as in
Lemma 1. We have for x€ S:

J(x) = g(x—uo)+h(ug) = g(x)—g(ug)+h(uo) = g(x).
Since the index of § equals two, function f may be written as follows
g(x) for x€ S,
©) JG) = {g(x—u)+h(u) for x€G\S, {u}=(G\SNU.

Suppose that condition (C) holds. It means that there exists a solution f of
equation (1) such that for every x€ G\ S there exists y€G such that

(M f(x+y) # f(X)+f().

Two cases may occur: 1) y€S, 2) yeG\ S. In case 1)
x+y € G\S

and hence

S(x+y) = g(x+y—u)+h(u).
This equality implies that inequality (6) may be written in the following way:
g(x+y—u)+h(u) # glx—u)+h(u)+g(y).

In virtue of Lemma 2 H is abelian. In consequence, the last inequality is equivalent
to the following one

(8) gx+y—u) # g(y)+g(x—u) = g(y+x—u).
In case 1) x+y€S and in consequence inequality (7) receives the form

glx+y) # g(x—u)+h(u)+g(y—uw)+h(u).

4D
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But H is abelian and 2m=0 for mé€ H. Hence, the last inequality may be written
in an iquivalent form as follows

) glx+y) # glx—u)+g(y—u) = g(x—u+y—u).

Let us put T=Kerg. Obviously, S/T is isomorphic to the subgroup g(S) of
the group H. Inequality (8) is equivalent to the condition x+y—u—(y+x—w)¢T
and hence it is equivalent to condition (4). Inequality (9) is equivalent to the con-
dition (4). Inequality (9) is equivalent to the condition x—u+y—u—(x+y)4 T
i.e. to condition (5). Thus, we have proved that if condition (C) is satisfied, so is
condition (D).

Suppose now that condition (D) is fulfilled. Let ¢ denote the isomorphism of
the group S/T onto some subgroup of the group H and let k: S—S/T be the
canonical mapping. We put g=tok. Let U be any selector of the family {S, G\ S}
such that {u}=(G\ S)U, where u is the element occuring in (5). Let h: U-~H
be an arbitrary function satisfying (3). Let us consider function f defined by (6).
It is immediately seen that 7=Ker g. We have proved in the demonstration of
the implication (C)=(D) that the alternative of conditions (4) and (5), under
respective notations, is equivalent to inequality (7). Hence, for every x€ G\ S there
exists y€G such that (7) holds. Because, in addition f satisfies (1) it proves that
N;=S, which completes the proof.

We obtain from Theorem 4 the following

Corollary. Let all assumptions of Theorem 4 be fulfilled and let additionally
2x=0 for every x€G. Then there does not exist a function f: G—~H such that
NI=S-

PROOF. Let us observe that under our assumptions for every x, y, u€¢G and
every subgroup 7 of the group S conditions (4) and (5) are not valid. This statement
and Theorem 4 completes the proof.

We shall illustrate our considerations by the following

Example. Let G be the additive group of integers and SC G a subgroup
assembled from all even integers. As the group H we take the group Z,={0, 1}
with addition mod 2. Let 7C S be a subgroup of integers of the form 4n for n
runs over the set of integers. It is obvious that the group S/7 is isomorphic to
the group H. Let us put y=wu=1. Then y, ucG\ S and for every x€G x—u+y—
—u—y—x=-—2¢&7T. It means that condition (D) of Theorem 4 is satisfied.
Hence, there exists a function f:G-H such that N =S. The construction of
this function is given in the last part of the proof of Theorem 4 and in Lemma 1.
In the considered case the function g occuring in this construction has the form

0 for x=4n, neZ,
g(x)—{l for x=4+2, n€Z.
In consequence, if we put /(1)=0 then we obtain (by this construction) the func-
tion f defined as follows
for x=4n, n€Z,
for x=4n+2, ncZ,
for x=4n+1, n€Zz,
for x=4n+3, ncZ

f(x) =

—_—0 = O
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It can be also verified that for groups G, H, S there exist only two functions
f:G—~H such that N;=S§
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