The archimedean kernel of a lattice-ordered group
By G. OTIS KENNY ?) (Boise, Idaho)

0. Terminology and notation. Throughout this paper G will denote a lattice-
ordered group (henceforth, /-group), written additively without regard to the com-
mutativity of G. A subgroup H of G is called an /-subgroup if it is also a sublattice
and 18 convex if x€ H and 0<=g=x implies g€ H. If H is an [-subgroup of G, the
positive cone of H, denoted H*, is the set {h€ H|0=h}. The polar of a subset AC G,
denoted A, is the set {x€G| |x|Ala|=0 for all ac A} and we let {a}' =a’. A value
for 0#x€G, denoted P,, is a maximal element of the set of all convex /-subgroups
of G which do not contain x. Let I'(G) be an index set for the set of all values of
non-zero elements of G partially ordered by y=é if G,SG;. The intersection
of all convex /-subgroups of G which properly contain a given value G, is the smallest
convex /-subgroup properly containing G, and is called the cover of G,. The cover
of G, is denoted G". G is called normal-valued if each value is a normal subgroup
of its cover. For x€G, G(x) will denote the convex /-subgroup generated by x.
For other terminology and notation, the reader is referred to [7] or [9].

1. The existence of the archimedean kernel. Our original proof of the existence
of the archimedean kernel required that G be representable ([10]). If G(g) is archi-
medean, G(g) is contained in the largest abelian convex /-subgroup of G, so the
existence of the archimedean kernel for representable /-groups implies the existence
in general. In [13], ReEpDFIELD proved the existence of the archimedean kernel for
an arbitrary /-group. Since Redfield’s proof is easier, we will use it here.

An element acG* is called archimedean if for each 0<g=a, there exists an
integer n>0 such that ng==a. Let P(G) be the set of all archimedean elements
of G* and let A(G) be the convex /-subgroup generated by P(G).

Theorem 1.1. (REDFIELD, [13]). A(G)*=P(G).

ProOOF. Since P(G) is a convex normal subset of G which contains 0, it suffices
to show P(G) is a subsemigroup of G*. Suppose (by way of contradiction) that
there exists a, b€ P(G) such that a+b¢ P(G). Then there is a 0=r=a-+b such that
nt=a+b for all integers n=>0. Since a is archimedean, there exists an integer
m=0 such that mt£a (m=1 is possible). Then

s =(—a+mt)y0 = 0.

1) This paper is a portion of the author’s doctoral dissertation written under the direction
of Professor PAuL CONRAD.
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Since nt=a+b for all integers n=0,

€)) —at+tnt=>b forall n=0,
S0
2) (ma+n)y0=b forall n=0.

We will show by induction on k that
ks = (—a+kmt)y0 forall k=0.

The case when k=1 is valid by the definition of s. Suppose that the inequality
is valid for k=h, i.e.,

3) hs = (—a+hmt)V0.

Then,
(h+1)s = hs+s = (—a+hmt)yO+(—a+mt)\0

by (3). Since —a+/mt=—a+mt and —a+hmt+mt=—a+hmt—a+mi,
(h+1)s = (—a+hmt—a+mt)\V(—a+hmt)\\(—a+mt) V0 =

= (—a+hmt+mt)\/(—a+hmt)\VO0.
Therefore,

(h+1)s = (—a+ (h+)mt)V(—a+mt)V0 = (—a+ (h+1)mt) V0,
which completes the induction. Now, by (2),
ks = (—a+kmt)y0 = b

for all k=0 which is impossible since b is archimedean. Therefore, a+b is archi-
medean and so S(G)=A4(G)*.

Corollary 1.2. (REDFIELD, [13]) A(G) is the (unique) largest convex archimedean
I-subgroup of G.

An element 0=s€G* is called basic if the set {x€G* |x=s} is totally ordered.
G has a basis if each positive element exceeds a basic element. If s€G is basic, then
s 1s a prime convex /-subgroup of G ([17]) so s has a unique value. A convex /-sub-
group K of G is said to be closed if for each subset {h;|4€ B} of K such that h=Vh,
exists in G, then h€K.

Theorem 1.3. Let G be normal-valued and let 0=x¢cG. The following are equiv-
alent:

(@) xcA(G).

(b) x| is archimedean.

(¢) G(|x|) is an archimedean I-group.

(d) x"=N{P,|P, is a value for x}.
If, in addition, G has radical zero (see [7)) and A is the minimal plenary subset of I (G),
each of the above is equivalent to

(e) If 6€ A is a value for x, then é is a minimal element of I (G).
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Proor. The equivalence of (a), (b), and (c) can be found in [I3].
(¢)—~(d) Clearly x’S NP,. Let y¢NP,. Then

x|Aly eG(Ix)N (NP, =N (P.,NG(x])) = {maximal [-ideals of G(|x|)} = 0

since G(|x|) is an archimedean /-group with a strong order unit. Thus y€x’ and
x'=NP,.

(d)—~(b) Suppose (by way of contradiction) there exists O<=7=x such that
nt=x for all integers n=0. Since 0#t=1/|x|, by (d), there is a value P, of x
such that 7¢ P,. Since |x|=¢=0, P, is also a value for 7. Now

|x|+P, = nt+P = P, for all integers n =0

which is impossible since G is normal-valued. Thus |x| is archimedean.

Now suppose G has radical zero and 4 is the minimal plenary subset of I'(G).

(a)—(e) Since G has radical zero, so does 4(G) and so 4(G) has a basis, (see [7]),
say S=/{s;/AcA}. Then an isomorphic copy of A4(G) lies between X,G(s;) and
I1,G(s;). For each A€ A, let G,=s; be the unique value of s;, (since s;€A4(G),
s;={P|P is a value of 5;,}=G;). Since G, is a polar, it is a minimal prime. Let
0#x€A(G) and let 6€ 4 be a value for x. Since G; is essential (see [7]), it is closed,
so there exists a A€ A such that s; ¢ G5. Therefore, G;=G; and ¢ is a minimal elem-
ent of I'(G).

(e)—~(b) Let x€G be such that each value for x in 4 is a minimal element of
I'(G). Suppose (by way of contradiction) there exists 0<¢€G such that n/=|x|
for all integers n=>0. Let €4 be a value for ¢. Since x¢ G and each value for x
in 4 is minimal, J is a value for x. But then, |x|+G;=nt+G;>G; which is im-
possible since G is normal-valued. Thus |x| is archimedean.

Remark. The proof of theorem 1.1 shows that (e)—(a)«=(b)«=(c)—~(d) 1is
valid for arbitrary /-groups.

2. Properties of A(G). If G is an /-subgroup of H, then H is called an a*-extension
of G if K-~KNG is a one-to-one map of the closed convex /-subgroups of H onto
those of G.

G is said to be an

L-group if Vs, exists for any disjoint subset {s;} of G.

P-group if G=g'®g" forall g€G.

SP-group if G=A"® A" forall ACG.

O-group if G is an L-group and a P-group.

Let G be an /-subgroup of H. H is called an X-hull of G, for X=P, SP, L or O,
if G is large in H, H is an X-group and no proper /-subgroup of H which contains
G is an X-group. The X-hull of G will be denoted by G*. Notice that if X=P, SP
or O, then G*, and hence G, is representable. For discussion of X-hulls, see [8],
and for the existence of L-hulls, see [1].

Proposition 2.1.

(a) A(G) is a closed I/-characteristic /-subgroup of G.

(b) Let K be an /-subgroup of G. If K is either large or convex in G, then 4(K)=
=KNA(G).

(c) If G is an X-group, so is A(G) for X=P, SP, L or O.
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(d) A(G)*S A(G*) but equality need not hold for X=P or SP even if G
is abelian with a basis.
(e) A(1G;)=HA(G)).

ProoF. (a) Clearly A(G) is /-characteristic. BLEIER and CONRAD ([2] and [3])
have shown that the closure of a convex /-subgroup is an a*-extension and that
an a*-extension of an archimedean /-group is archimedean. Thus, maximality of
A(G) implies that it is closed.

(b) If K is convex in G, the result is clear. 4(K)2A(G)NK is true for any
I-subgroup K of G. Suppose K is large in G and let 0=x€A(K). Let g€G be such
that 0<=g<x. Since K is large in G, there is an integer n=0 and a k€K such that
O<k<ng. Since x€A(K), there is an integer m=>0 such that mk£x (m=1 1s
possible). Then mng£x so xcA(G).

(c) By [8], a closed convex /-subgroup of an X-group is an X-group.

(d) Since G is large in GX, A(G) is large in A(G*X), and by (c), A(G¥) is an
X-group. The intersection of all /-subgroups of 4(G*) which contain 4 (G) and are
X-groups is the X-hull of 4(G). Thus A(G)*< A(G*). For the last statement, see
example 1 in section 4.

(e) Clear.

Let K be an /-subgroup of G. K is said to be an Z-subgroup of G if, for each
set {ug|f€ B} of disjoint elements of K such that V cu, exists, it follows that Vgu,
exists and equals Vi u,. An H-representation of G is a pair (o, I H,) where ¢ is an
I-isomorphism of G onto a subdirect sum of ITH; and each H, is a transitive /-sub-
group of the /-group of all permutations of a totally ordered set T,. An H-representa-
tion is called complete if o preserves all joins and intersections existing in . BYRD
and Lroyp, [4], have shown that G is completely distributive if and only if G has
a complete H-representation (¢, ITH;) and, [5], the intersection of all laterally com-
plete #-subgroups of ITH; which contain Go is the L-hull of G.

Theorem 2.2. If G is completely distributive, then A(G)‘=A(G").

PRrOOF. Let (o, ITH;) be a complete H-representation of G. By abuse of nota-
tion, we will suppress ¢ and view G as an /-subgroup of I1H;. Now, A(G) is com-
pletely distributive and so has a basis, say S={s,/f<B}. S is also a basis for 4(G").
Let 0=x€A(G"). For each BB, there is an integer ng=0 such that nys;=x.
Let xg=ngspAx. Then xzAx,=0 for f#y and x=Vx;. Thus, in order to
show A(G)*=A(G"), we need only show x,€G. If x,=0, we are done. Suppose
xg=>0. Then there is a A such that (x;);>0. Since G is a subdirect sum of I1H;,
there is a 0<g€G such that g;=(x,);. By replacing g by nys;/\g, we may assume
g€G(sp). Since s, is basic, G"(sp) is totally ordered and so a subgroup of the real
numbers, since s3€A(GY). Since g;=(x;);, we have ng=mx;>0 if n=>m=0,
and mx;>ng=0 if m>n>0. Thus g=x; and A(GY)=A(G)~.

Since the class of archimedean /-groups is not closed under /-homomorphic
images, A (G)f need not be contained in 4 (Gp) for an arbitrary /-homomorphism f.
It is natural to ask when A (G)p is contained in A(Gp) for all -homomorphisms f.
If A(G) is hyperarchimedean, A(G)BS A(GP) is always valid. Conversely, if G
is representable and A(G) is not hyperarchimedean, let P be a minimal but not
maximal prime /-ideal of A(G). Then A(G)/P is not archimedean. Now, let Q
be the minimal prime /-subgroup of G such that QA4 (G)=P. Since G is represent-
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able, Q is normal in G and (A4(G)+Q)/Q=A(G)/P is not archimedean. Thus,
if G is representable, A(G)f<S A(GP) for all I-homomorphisms B if and only if
A(G) is hyperarchimedean. The following theorem gives an indication of what
may happen if G is not representable.

Theorem 2.3, (1) Let G be an I-group such that for every I-homomorphism B,
A(G)BS A(GP). Then for each characteristic convex I-subgroup K of A(G), A(G)/K
is archimedean.

(2) Conversely, if A is an archimedean I-group such that for each characteristic
convex l-subgroup K of A, A/K is archimedean, then there is an I-group G such that
A(G)==A for every I-homomorphism B, A(G)BS A(GP).

ProOF. (1) Since 4(G) is characteristic in G, and K is characteristic in A4(G),
K is normal (in fact, characteristic) in G. Thus A(G)/KS A(G/K) so A(G)/K
is archimedean.

(2) Conversely, suppose A is an archimedean /-group such that A4/K is archime-
dean for all characteristic convex /-subgroups K of 4. Let 2l be the /-automorphism
group of 4 and let F be a free group with epimorphism u: F—2. Since F is free,
it is orderable (see [9], page 49) so we will view F as an ordered group. Let G be
the splitting extension of A by F via p, lexicographically ordered. L.e., the underlying
set is FX A with group operation (f, a)+(g, b)=(f+g, a(gu)+b) ordered by
(f,a)=0 if f=0 or f=0 and a=0. It is easy to show that G is an /-group.
A(G)=~= A, and if P is an /-ideal of G, P A(G) is a characteristic convex /-subgroup
of A(G) so A(G)BS A(GP) for all I-homomorphisms f.

Since the archimedean kernel does not have many of the nice properties of
the hyperarchimedean kernel, (see [12])], we also considered the possibility of a
maximal subdirect product of subgroups of the totally ordered group of real numbers.
Unfortunately, as example 2 in section 4 shows, this does not, in general exist.

3. The Archimedean kernel sequence. Following the construction of the ascend-
ing central series for groups, we have

A(G) = A'(G) £ 4*(G) S A*(G) &...
where, for an ordinal f,
APHHG)/AP(G) = A(G/AP(G)),
and if B is a limit ordinal,
A*(G) = U 4*(G).

u=p

Let a, beG*. We say a is archimedean less than b, denoted a<b, if na=b
for all integers n=0. Thus, 0<=a€A(G) if and only if a=b implies b=0. It
seems reasonable to suppose 0<=a€A4*(G) if and only if a=b=c¢ implies ¢=0.
In fact, it is easy to show that if 0=a€A4%(G) then a=b=c does imply ¢=0,
but the converse is false, as example 3 shows. We do not know if there is an element-
wise characterization of A%(G).

By a simple cardinality argument, there is an ordinal § (depending on G) so
thft AP (G)=AP*'(G). Let A*(G)=AP(G). We now investigate conditions for
A*(G)=G.
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Theorem 3.1. A*(G)S[4A(G)]”. Thus if A*(G)=G, then A(G) is dense in G.

Proor. It suffices to show A7(G)MN[A(G)]'=0 for each ordinal y. We will
induct on y. The case when y=1 or y a limit ordinal is clear. Suppose A”~*(G)N
N[A(G))=0 and let 0=xcA?(G)N[A(G)]. Suppose (by way of contradiction)
x#0. Then x4 A"~*(G)2A(G), so there is a O0<y<=x. Thus x+A""}(G)»
>y+A""1(G) so ye A’~1(G). Since 0<y<x, y€[A(G)] so yE[A(G)) NA"~1(G)=0,
a contradiction. Thus A7(G)N[A4(G)]’ =0.

This condition is not sufficient since if H=V (4, R) (see [7]) where 4 is totally
ordered and R is the totally ordered group of real numbers, than 4(H)=0 if and
only if A has no minimal element. Let B be an archimedean /-group. The lex-ex-
tension G of B by H is an I-group with A4(G)=< B dense in G but if 4 has no minimal
element, A*(G)=A4(G)=G.

Lemma 3.2. If K is a convex l-subgroup of G, then K(A*(G)=A*(K).
The proof of this is similar to the proof of Proposition 1.4 of [10] and is
omitted.

Theorem 3.3. Let G be a normal-valued I-group and suppose I'(G) satisfies the
descending chain condition. Then A*(G)=G.

Proor. We will show that the descending chain condition on I'(G) forces each
sequence of the form
Xy Xg i, X3 >0

to be finite. This will guarantee that A4(G)#0 and a simple cardinality argument
will show A4f(G)=G. Suppose (by way of contradiction) that there is an infinite
sequence

Xy B Xg P X3 P..., X; > 0. (W)

Since G is normal-valued, each value of x;,, is properly contained in a value of
x;. The set {xgilﬁt} is a filter in G* and hence is contained in an ultrafilter .
G\ is the positive cone of a prime /-subgroup P. Since the collection of all
convex /-subgroups which contain P is totally ordered, and x;¢ P for all i, there
is a chain

G, 0G;,DG3D

where G; is a value of x; and each containment is proper. This contradicts the fact
that I'(G) satisfies the descending chain condition. Therefore any sequence of the
form (w) is finite.

This condition is not necessary since an infinite cardinal product of the /-group
of real numbers is an archimedean /-group and has minimal primes which are not
values and therefore does not satisfy the descending chain condition, so A(G)=G
but I'(G) does not satisfy the descending chain condition.

4. Examples. 1. An example of an abelian /-group G with a basis such that
A(GY*#A(G*) for X=P or SP.

Let G be the set of all real-valued sequences with domain the non-negative
integers such that f€G implies there exists an n so that if m=n, then f(0)=f(m).
When G has pointwise addition and partial order f=g if f(0)=g(0) and f(n)=g(n)
for n=1 or f(0)=g(0) and f(n)=g(n) for n=1, then G is an /-group. Then
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A(G)={f€G|f(0)=0} which is an SP-group. G°F is the /-group of bounded
functions and G” is the /-group of eventually constant sequences. A4(G°F)={fcG5?|
£(0)=0} and A(G")={fcG"|f(0)=0).

2. An example of an archimedean /-group G which has no convex /-gubgroup
which is maximal with respect to being a subdirect product of subgroups of the
l-group of real numbers. This example is due to SHELDON [14].

Let F be the /-subgroup of [] Z generated by the characteristic functions
[0,1]
of closed intervals, where Z is the integers. For each b€[0, 1], let

UG—B)] x b
h.,(x)={[ ("0 Yl A

where [...] is the greatest integer function. Let K be the subgroup of I1Z generated
by the h,, b€[0, 1] and F. Then any f€ K can be written in the form

f= k+nlhbx+nghb,+...+n“hbm (C)

where K€F and each n;#0. Let G=K/ZZ. Then
1. G is an I-subgroup of [1Z/ZZ.

2. G is archimedean.

3. The prime /-ideals of G are

Py ={f+ZZcG|h, does not occur in the expansion ({) for f.}

Py={f+Z2ZcG|f(x)=0 for almost all x¢(y, b) some y<b}, (b=0)

Py={f+ZZcG|f(x)=0 for almost all x¢(b, z) some z=>b}, (b=1)
4. P,2P{UP;.

5. F/ZZ< N Py, so G is not a subdirect sum of subgroups of the real numbers.
6. If H is a convex /-subgroup of G, then H is a subdirect sum of subgroups of
the reals if and only if

S={be[0, 1]|P,NHC H has empty interior}.
1-—S5 are in [14].

Proof of 6. Since H is convex, I'(H) is precisely {KeI'(G)| KNHc H}.

(—) Suppose S has non-empty interior, say (s, 7)< S. Let s<m=n<t. Since
[m,n]S(s,t)S S, we can find a g€ H so that g(x)=1 for all x€[m,n], and
g(x)=0 if x§ (s, 7). Now this g is in every maximal prime of H so H is not a sub-
direct sum of real numbers.

(=) Suppose (by way of contradiction) S has empty interior. If ¥Z<XZ+ g€ H,
then there is an interval (s, #)c[0, 1] such that g(x)=1 for almost all x€(s, t).
Since S has empty interior, there is a b€(s, 1) such that b¢ S, so P,(V\H=H. Since
g(x)=1 for almost all x€(s, b), g+XZ¢ PR which is a maximal prime of H. Thus
H is a subdirect product of subgroups of R.

Since [0, 1] has no subsets maximal with respect to having empty interior,
G has no maximal subdirect product of subgroups of R.

3. An example of an /-group such that for all a€G, a=b>c¢ implies ¢=0,
but A4%*(G)#G.
Let G be the set of all real sequences (a,, a,, a,, ...) such that a,=na,+a, for
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all but finitely many n=2 with pointwise addition and ordered by (a,, a,, g, ...)=0
if a,=0 for n>2 and a,>0, or a,=0 and @,>0, or a,=a,=0 and a,;=0.
It is easy to see that A(G) is the set of all sequences with gy,=a,=0 and G/A(G)=
=R®R.
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