A new algebra of distributions on R"
By HARRIS S. SHULTZ (Fullerton, California)

Abstract. An algebra of distributions on R" isintroduced; it contains all the distributions having
support in the positive cone {(t;, ..., 2,): # = 0,i = 1, ..., n} and all the functions which are locally
integrable on R". For n=2, the algebra consits of those distributions which are regular in the sets
{(x, ¥): n=x<0} and {(x, y): n=<y<0} for some #<0. The multiplicative operation is convolution,
defined so that there are no growth restrictions nor are there any restrictions on the supports. For
those distributions having support in the positive cone, the given definition of convolution is con-
sistent with the standard one.

In [1], [2] and [4] there is introduced a commutative algebra B of distributions
on (—ee, =) which contains all the distributions having support in [0, =) and
all the functions which are locally integrable on (—ee, ). Each element of B has
the property that it can be uniquely decomposed into left and right hand parts.
The convolution FAG is defined so that there are no restrictions on the supports
nor are there any growth restrictions; for those distributions having support in
[0, =) the definition of FAG is consistent with the usual operation of convolution
B, g 1121

In this paper we extend the previous work to R". In this case, each element
of B has the property that it can be uniquely decomposed into 2" parts (for n=2,
each element of B can be written as the sum of 4 distributions, each of whose sup-
ports is contained in one of the 4 quadrants). Convolution is defined so that, if f
and g are continuous functions, then

) SN s ) = [ oo [ Sty ty=0)E s e ) ity ..

for all (1, ..., 1,)€R", consistent with [4, (0.01)].
Throughout, n is a fixed positive integer and R" denotes Euclidean n-space.
For £=0,1,...,2°=1, Iet

3 Blk, p2-?

be the binary representation for k. Thus, each f(k, i) is either O or 1. Define
Xy ={(ty,.... L )ER*: (—1Y*0, &0, i =1,...,n}
and
Z Bk,
o) = (~1)" .
For example, if n=1 then X is [0, =) and X; is (— <, 0]; if n=2 then X,, X;, X,
and X, are, respectively, the first, second, fourth and third quadrants. The numbers
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0(0), 6(1), 6(2) and o¢(3) are, respectively, +1, —1, —1 and +1. For i=1,...,n
and any real number 7 we define

Y(n,i) = {(ty, ..., L,)ER": ;> n}.

By a distribution (on R") we mean a continuous linear functional in the sense
of LAURENT SCHWARTZ [3]. We define L to be the space of all complex-valued func-
tions which are Lebesgue integrable on each bounded subset of R". If fc€ L then
the regular distribution defined by f is denoted [ f]. We say that the distribution
F is regular in the open subset 2 of R" if there exists f€ L such that F=[f] in Q
([6, p. 25]). The support of a distribution F, denoted supp F, is the complement of
the largest open set on which F vanishes.

Definition 1. We define B to be the set of distributions F on R" for which
there exist <0 and distributions F, (k=0, 1, ...,2"—1) such that

"1
(@ F= 2 Fy

k=0
() supp F,cX, (k=0,1,...,2"-1);
(c) F, is regular in the set Y(y,7) if 1=k=2"—1 and B(k,i)=1.

Example. If F is a distribution whose support is contained in the “positive
cone” X, then F belongs to B.

Example. If f€L then [f]€B.

Theorem 1. If F belongs to B then there exist unique distributions F, (k=0,
1, ..., 2"—1) which satisfy the conditions of Definition 1.

We defer the proof of Theorem 1.

Notation. For each FéB we denote by F* (k=0,1,...,2"—1) the unique
distributions F, (k=0, 1, ...,2"—1) which satisfy the conditions of Definition 1.

Definition 2. If F and G belong to B we define
2n-1
FAG = D a(k)F*»G*
k=0

where F*x*G* is the convolution of F* and G* [3, p. 112].

Remark. If F and G have their supports contained in the “positive cone” X,
then F°=F and G°=G; therefore, FAG is simply F#G.

Theorem 2. If F and G belong to B then FAG belongs to B with (FAGY=
= F*»G* for each k.

ProoF. Let 0=k=2"—1. If 0=(—1)®P1<q and 0=(—1)®Dy,<b for
i=1,...,n, then 0=(—1®?(t,+u)<a+b for i=1,...,n. By [3, Theorem 3,
p. 113] the convolution F*# G* is defined; from [3, Theorem 8, p. 120] we deduce
that supp F** G* is contained in X;. Suppose p(k,i)=1. There exist n<0 and
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functions f and g in L such that F*=[f] and G*=[g] in Y(n,i). Letting U=
=F*—[f] and V=G*—[g] we have

F¥xG* = UxV+ Ux*[gl+[f1*V+[f]*[g).

Since U=0=V in ¥(n,i) and [f]=0=[g] in Y (0, i) it follows from [3, Theorem
8, p. 120] that U=V, U#[g] and [f]*V are equal to zero in ¥(y, i) and therefore
that F*#G*=[f]#*[g]l=[f*g] in Y(n, i); the second equality is from [3, Theorem
4, p. 114]. Thus, F*#G* is regular in Y(n, i).

Theorem 3. If F, G and H belong to B then FAG=GAF and (FAG)\H=
=FA(GAH).

ProoF. The equality FAG=GAF comes from [3, Theorem 3, p. 113]. Let
0=k=2"-1. If 0=(-=1y*®4>qg 0=(—1®?y=b and 0=(—1yY®dy<c
for i=l, ...,n, then

0 = (—1)!®(f4+u+v) <a+b+c (i=1,...,n).

From [3, p. 121] we deduce then that (F** G*)* H*= F*« (G** H*). From Theorem
2 it follows that (FAG)**H*=F*%(GAH)* and therefore that ((FAG)AH)=
=(FAN(GAH)).

Example. The Dirac distribution é belongs to B. Note that §°=4 and 6*=0
for k=0. Therefore, A F=F° for all FE€B (see [3, Theorem 6, p. 119]); if supp F
is contained in the “positive cone” X, then SAF=F.

Let hé L and 0=k=2"—1. We define the function #* to be equal to /& on X,
and to be equal to 0 elsewhere; then [#*]=[A]*. If f and g belong to L we define

-1
FAg(ty, ..o t) = 2 o(k) f...ff"(rl—ul, iz ba == (o, o es s ) Aty <os e
k=0 R®

By [3, Theorem 4, p. 114], the function fAg belongs to L and [fAg]=[f]A\[g].
We observe that

FAL(tys s t) = o’(k)f ...ff"(rl— Uy soes Tn— U B (815 2 1o s Up) A8y o AU,
X

for (t, ... 1,)€Xy; therefore, if f and g are continuous, then (1) holds.
We conclude with the proof of our first theorem.

PRrOOF of Theorem 1. Suppose FEB and that F, (k=0,1,...,2"—1) and G,
(k=0, 1, ..., 2"—1) satisfy the conditions of Definition 1. We shall prove that F,=G,
for each k. By assumption, there exists #<0 such that F, and G, are regular in
Y(n, i) if B(k,i)=1. Suppose B(k, i)=1. There exist fand g in L such that F,=[f]
and G,=[g] in Y(n,i). Since F,=F=G, in the interior of X,, the functions f
and g must be equal almost everywhere in the intersection of ¥ (y, i) with the interior
of X, (see [5, Theorem 21.3]). Since F,=0=G, in the complement of X,, we have
f=0=g a.. in the intersection of Y(n, i) with the complement of X,. Since the
boundary of X; has measure 0 we may conclude that f=g a.e. in Y(n, i). Again
using [5, Theorem 21.3] we see that [f]=[g] in ¥(y, i). We have shown then that
F,=G, in Y(n, i) if B(k,i)=1. For each k define N(k) to be the number of co-
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efficients p(k,i) (i=1,...,n) for which f(k,i)=0. Thus, N(2"—1)=0 while
N(0)=2". We assert that F,=G, for each k. This will be proved by induction
on N(k). Suppose N(k)=0. Then f(k,i)=1 for all i and therefore, by the above
result, F,=G, in Y(n, i) for each i. But F,=F=G, in the interior of X,. Since
the sets Y(n, i) (i=1, ..., n) together with the interior of X; form an open covering
for R" we may use [5, Theorem 24.1] to conclude that F,=G,. Thus, the assertion
is true for N(k)=0. Assume F,=G, for all k satisfying N(k)=p. Suppose N(k)=
=p+1, where p+1=2". Let k,, ..., k, be those indices for which B(k, i)=p(k,, i)
for all i. Then N(k,)=p for each r and

Ft+Fk|+"‘+Fl, = F= Gi+GI‘,1+"‘+Gk.

in the set
Y={(tss.-..8): 4 <0 if p(k, D) =1).

But, by our induction hypothesis, F, =G, for r=1,...,s. Therefore, F,=G,
in the set Y. But F,=G, in each of the sets Y(y, i) where B(k,i)=1. Since the
set Y together with each of the sets Y(n, i), where f(k, i)=1, form an open cove-
ring for R", we have F,=G,. The assertion is thus true for all k satisfying N(k)=
=p+1 and the induction proof is completed.
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