The radius of starlikeness of certain subclasses
of analytic functions

By R. N. DAS and P. SINGH (Kanpur)

1. Introduction: The sharp lower bounds for Re {z—ﬁéf)

etc. have been determined for the class Q(x, A) of analytic functions F(z) in
E(z|]<1); F(z2)=(1—2A)z+4if(z), 0=A=1, where f(z) belongs to the class R(x)
of analytic functions

}, radius of starlikeness

(1.1) f(2)=z+ Ja,z"
n=2
satisfying the condition Re {fi—z)}:-a, 0=a<=1 there, thus, leading to some good

observations about the classes R(x), Q(x, 1) etc.

Let S denote the class of analytic schlicht (univalent) functions represented
by (1.1). For fixed o, 0=a<1, let S*(x) denote the class of normalized functions
f(z), given by (1.1) which are analytic, schlicht and starlike of order « in E, so that
the condition

(1.2) Re{zf’(z)

(2

}} o holds for z€E.

For fixed o,0=a<1, let C(x) denote the class of normalized functions f(z) of
the form (1.1), which are analytic schlicht and convex of order « in E i.e. the func-
tions f(z) satisfying the condition

Zf”(Z)]

1.3 Re [l+-,—- a for z€E.
S @l

Let P(x) be the class of functions

(1.4) p(2)=1+ Ja,z

n=1

which are analytic in E and have real part greater than «, 0=a<1 in E ie. p(2)
satisfying the properties:

Rep(z)=a in Eand p(0) = 1.

7D
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Let R(x) be the class of analytic functions f(z) of the form (1.1), satisfying the
property

(1.5) Re[@] ¢ i Eie @ep(a).

Next, denote by Q(x, 4), the class of functions
(1.6) F)=x#2+(1-4)z

where f(z)ER(z),0=A=1,0=a<1.

Such classes have been considered from the point of view to determine the radii
of schlichtness, starlikeness and convexity of a linear combination of mappings,
having certain properties of starlikeness. Convexity or real part greater than
a(0=a<1) etc.

The class R(x) has been considered as regards finding out the sharp lower
bound for Re f'(z), first by YaAMAGUcHI (17] for a=0 and later by GokL [3], with
second coefficient fixed, giving an improvement of the former result. The univalency
of the partial sums were also studied there.

Our class Q(a, 2) discusses Hayman’s question [6] for the Spe'Clal case, where
the 2nd function becomes an identity function. This case may be viewed from the
following stand point:

Suppose that f(z)€C(0) and that f(z)=z+g'a,,z", then F(z)=1if(2)+

+(1=A)z=z+4 2 a,z". What can be said about the schlichtness or starlikeness of

F(z)?Ina recent paper, TrimBLE [16] proved that if f(z)€ C(0), then F(z), represented
by (1.6), has the following properties:
(1) F(z)€K; K being the class of close to convex functions, introduced by KAPLAN [8],

’ 3.-2

- *
A [2(24.)
(i)) F(z) need not be in S*(0) for A<2/3.
Afterwards, CHICHERA and SINGH [2] generalized the case by attaining that F(z)
becomes starlike for all 4,0=4=1, if certain additional restriction be imposed

on f(z) ie. “if f(z)€C(0), then F(z)z}.% f:f(r)dt+(1—-}.)z belongs to S*(0)
< 0

for all 4, 0=A=1". In our case, the class Q(a, 1) coincides with R(x). We mention
an interesting result, derived by GoraL [4], on using variational techniques of
ROBERTSON [12].

“Let f(2)€S and f(z)€R(x), 0.1=a=1, then f(z) is starlike for |z|<r,, where

] if %El-:l,

V(l—a)—a 3 g : ’
Ty= o T This result is sharp (this generalizes a result due to MACGRE-
GOR [9])”.

In this context, we deduce the above result under the weaker assumption when
f(z) need not be schlicht in E and also go through some interesting observations for
the classes R(), Q(a, 4) etc ..
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2. Useful lemmas

First of all, we shall like to mention the following lemmas, equally helpful
in this direction, derivable on the basis of the basic lemma of SINGH and BAJPAI [1].
Lemma A [1] Let

a 1 _ (1=-b)22¢'(2)
1+zp(z) (1+bze(2)) (1+z9(2))(1+bze(2))

where @(z) is analytic and |¢(2)|=1 in E, —1<b=1 and a=1 then for |z|=7r,
0=r<l1,

2.1 H(z) =

& (a—1)+(1—ab)r

22) Relln T
2.3) Re H(z) =
(1+ab+2b)(1—r)+2(1—b) , 2 1/(+a)(1+b)(1—br)
™ (1—b)(1—r9) B o - T—° g
| (a=D+(ab-1)r
(I+r)(+br for wo=u,

L 2
where u, = : { (d+5)0 br)—b] and u, = :

1-b (1+a)(1—r?» 1+r°
Lemma 1. Let / satisfy 0=A=1 and f(2)€Q(a, 4) i.e.
F(z) = (1—2)z+Af(2), where f(z)ER(x), O0=a=<1.
Let ry(z, A) denote the smallest positive root of the equation
(2.4) —14+3r4+3(1+200—2) r2—(1+2a1—22)r* = 0
which exists in (0, 1), then for |z|=r, 0=r<1, we have

2F(2) ] _ 1-2(1+200—20)r+(1+ 224~ 2)r?
F(2) (I—r)(1— (1 +2ai—24)r)

(2.5) Re [

(2.6)
14+2(1420A—=20)r+ (14 20A—22)r*

for O0=r=r(a, d)

Re [ (z)] (A+r) (141 +2ai—-22)r)
oy A(I [l4(1+0¢i—1)A (1+2a4—20)—A] for r(@A)=r<l
. e 2
where A= 1 (Hﬁﬁz )r . Equality sign in (2.5) and the first inequality of

(2.6) is attained for the function

1+ (2x—1)z
14z

2.7 f(g)y=2z , Jor 0=r=ry(x,l)

T
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and, that in the second inequality corresponding to the function f(z), satisfying the
conditions:

_ 1—2baz+Qa—1)z*
ek S 1—2bz+ 22 ;

where b is determined from the relation:

e gt . 2
29) 1—(2+2ak lzi)zi::(::m 2 Y s e 1 O

Proor. Since f(z)€R(x), there exists a function ¢@(z), satisfying schwarz’s
lemma, such that

(2.10)

f(z) _ 1+ Qa—1)z9(2)

z 14+z2¢9(2)
Consequently, we obtain
" 14+ (14204 —2)z¢(2)
(2.11) F(z) = z[ T

Diff. logarithmically F(z) w.r.t. z and then using (2.10) and simplyfying,
(2.12)

2F'(z) _ 1 &= 1 N 2A(1 —x)z2'(2)
F(z)  1+ze(z2) 1+(1+204-2)z0(2) (1+z2¢(2))(1+(1+22A—22)z¢(2))’

Using lemma A, with a=1 and b=1+2xi—24, we deduce (2.5) and moreover,

T VAR A (14 20-2) 4] for wo=u

ZF(2)] _
(2.13) Re F(z) 17 | 1420 +204—20)r+(1 + 224 —22) r? for up=u
(1+r)(1+(14+224—-24)r) F—
s and e~ A~ - -
where uy = 2/(1—2) [V +ai—2A—(1+224-20)] and u, = 1+r"

The two inequalities in (2.13) become equal for such values of 4 and «. for
which u,=u,,

(= (—(1+20-20)rY) _ (14+(1+222—2)r)?
2 1—r - 1 +r '

ie. g(@, 4, 1) = —14+3r+3(1+ 202 —24)r*— (1 + 2a4—24) r* = 0.

Then, it is easy to check that g(a, 4, r) is a strictly increasing function of r, 0=r<1,
foreach o, A;0=4A=1,0=sa<1.

Also g(a,24,0)=—1<0 and f(x,4,1)=4[1—A(—2a)]=0.

Hence g(«, 4, r) changes sign from negative to positive while moving through (0, 1),
so that the equation g(x, 4, r)=0 has a unique root ry(z, 4) in (0, 1). The proof
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is now complete. The sharpness of the result follows on using the technique of
SINGH and BaJpal [1] or SINGH and GoEeL [13].

Corollary 1. Let 1 satisfy 0=1=1 and F(z)GQ[-%-, J.) Le.

F(z) = (1-)s+Af(z), where f(z)'sR[-%-].

Let r,(4) denote the smallest positive root of the equation, which is unique in
(2_—V§s 1]1

(2.14) —143r4+3(1=)r2—(1=A)r* = 0.

Then, for |z|=r, 0=r<1, we have

ZF'(2) _ 1=2(1-Ar+(1—-)r?
(223 Re[F(z) = T a-n(—-(0-2r)
: %'[VZ(z—).)A—(l—A)—A] for n(A)=r=<1
(2.16) Rc[L(z) =
F(z) 142(1-D)r+(1-Dr*

ETTER for 0=r=ry(d).

Equality sign in (2.15) and the second inequality of (2.16) is attained for the function:

(2.17) F(z):ljz, 0=r=r()

1A

and, that, in the first inequality of (2.16) corresponding to the function f(z), satisfying

1—bz
(15) S@ = 2 v

where b is determined from the relation

1-Q-Abr+(1—Ar*  1/2—% , _
1—=2br+r? o 2 4% Ry

Remark 1. If F(z)=(1—21)z+Af(2), where f(z)€ C(0), then, still the corollary
1 holds, since f(z)€C(0) implies that f(z)€R(1/2).
zf'(2)

For A=1, we derive the upper and lower bounds of Re[ @

, when
f(z2)ER(x), 0=x<1, as compared to SHAFFER [14, 15].

Corollary 2. Let f(z)€R(x), 0=x<1 and r,(x) denotes the smallest positive
root of the equation, which is unique in (2—¥3, 1]:

(2.19) —143r+3Qx—1)r*—Qa—1)r = 0.
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Then, for |z|=r, 0=r<1, we have
[ 2f7(2) - 1-2Qx—1)r+Qx—1)r?
L@ 17 (a=-n(1-@2z=1r)

(14+2Qa—1)r+ a—1)r?
U+ +Q@z—1)r)

(2.20) Re

for 0=r=ry(a)

.21 Rc[zf'(z) e 4

1@ ﬁ[VMA—(Za—l)—A] for r@=r=<lI
where A=l—_-(lg%;l—)rs. Equality sign in (2.20) and the first inequality of (2.21)

occur for the function (2.7) and that in the second inequality for the function (2.8),
where b is determined from the relation:

1—-2abr+Q2x—1)r* e
(2.22) T e e Vad = R,.

Remark 2. The class R(x) for suitable o, can be generated either with the help
of the classes C(x) or S™(x), 0=a<1 as mentioned by MARX [11], JAack [7],
MACGREGOR & coauthors [10], HALLENBECK [5] etc.

3. Radius of Starlikeness for the Class Q(a, )

Theorem 1. Let F(z)€Q(x, A) and ry(x, 1) be the smallest positive root, which
exists in (0, 1), of the equation (2.4), then F(z) is starlike for |z|<ry(a, A), where

[ l+ai—2i 12
4+ =D+ VAl —a)(1+ai—2)

and moreover, ro(a, A)=r (o, 2). This result is sharp.

(3.1 rola, 4) =

For the class Q[%, J.] , the above theorem takes the form:

Corollary 1. Let F (z)EQ[%, A] and ry(1) be the smallest positive root of the

equation (2.14), which exists in (2— 3, 1], then F(2) is starlike for |z|<ry(4), where
2—2 12

[(2~A)+ Vi(2—4)

This result is sharp.

For the class Q(«, 1)=R(x), we deduce the following:

3.2 ro(4) = and ro(2) = ry(A).

Corollary 2. Let f(z)€ R(x) and r,(x) denotes the smallest positive root of the

equation (2.19), which is unique in (2—¥3, 1], then f(z) is starlike for |z|<r,(2),
where

(3.3) ro(2) = [
(0O<a<1). This result is sharp.

' & 1/2
a-H/W]
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The above corollary is also obtained by GopAL [4] on using different techniques,
with the additional condition that f(z)€ S. Hence, our result shows an improvement.
The above theorem follows immediately as a consequence of the lemma 1.

.8

Corollary 3 [9)]. Let f(z)€ER [%] , then f(z) is schlicht and starlike for |z|< 73

This result is sharp.
Remark 3. After some tedius manpulations, it can be seen that the function
F(z)€Q(a, A) in theorem 1, is starlike of order f, 0=p<1 for |z|<r,(a, 4, ), where
Vai(1—a)(1—B) (1 +ai—A)— pi(1 —a) ]"’
A1=a)2=P)+Vai(l—a)(1—p)(1 +ai—2)

(3.4) ro(2, 4, ) =

This result is also sharp.

Observations. Some sort of invariance property can be observed for the classes
R(x), Q(x, 1) etc.

@ Iff(z) =2+ 3 a,"¢R@), 0=a<l, thenforeach 1, 0=A=1,
n=32
h,(z) = z+24 S‘a,,z"ER(cx).
n=32

Since h;(z)=Aif(z)+(1—2)z, we have

Re [h"zﬁ] = ARe [fiz)] +(1=2)=> da+(1—4) = a.

Hence, h,(z)€ R(x), as required.
Explicitly, if F(z)€Q(x, A), then F(z2)=h,(z)=Af(z2)+(1—A)z and therefore,
h;(2)ER().
Now, consider the class Q,(x, 4), consisting of the functions 4§"(z) as defined by:
hV(z)=(1—=2A)z+Ai-h;(z), where h;(z)€p(a, A).
Therefore
(1)
M = (1_)_)+)_M = (1—5.2)+A’@-

z z z

So that
(1)
Re [—”—*Z—(Z)—] = A*Re [ii—z)—]ﬂl—zﬂ) =q

and hence A{V(z)€ R().
In this manner, we can construct, from the given class R(x), respective subclasses
Q(x, 4), Oy(x, 4), Qa(a, A), ..., so that the sequence (Q,(x, 2)) of classes satisfies
the property: Q,(a, 2)EQ,.(2, 4) for n=1.

(i) For the class Q(x, 4), some sort of converse problem is solved i.e. if

F(z) = (1-1)z+4f(2),
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where F(z)€R(x), then
(.5) f(z) = %[F(z)—(l—).)z], 0<i=1 (for 1=0, weseethat F(z) = 3).

Since F(z)€ R(z), we have
F(z) 1+Qa—1)z¢(2)

(3.6) e g , where ¢(2)
satisfies the conditions of Schwarz’s lemma.
Using (3.6) in (3.5), we obtain
e 1+bzqoﬁ s _2([—).)
(3.7 f(z) =z Tty where b =1 oo
Diff. logarithmically f(z) w.r.t. z provides
i et e S o SRR
' f(2) 14+29(z) 1+bzp(z2) (1+:z0(2))(1+bzo(2)
Now, for a=1 and b=1 —2(1; %) {in the range —1<b=1, we can apply lemma

A, to determine the lower and upper bounds of Re [ ){-(( )] from which the radius
of starlikeness can be obtained in an analogous manner.

4. Radius of starlikeness for the class N(x, A)
After seeing various properties of the class Q(x«, 4), it is natural to construct
a new class N(x, 4), which consists of the functions of the type.

4.1 F(2) = ( 3 [(1=2)z+if(2)]

where g(z)€C(0), S*(p) or R(P) and f(z)ER(2) (0=a, f<1; 0=1=1).
We use the notations given below

14+2(1 4204 =22)r+(1 +20A—21)r?

L (T+n(1+(1+2x—27)r) ’
Oy(r, o, 2) = [V4(l+oe). DA~ (142 —-2)— 4],
e 3

r

 1-2Qa—1)r+Qa—1)r?
@) = — G 5 a-Ga—D1)
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Theorem 2. Let F(z) be represented by (4.1), where f(z)ER(z), 0=a<1 and
g2(2)€C(0), then F(z) is starlike for |z|<ro<]1, r, is the smallest positive root of the
equation

(4.2) T(r,o 4) =0,
where

1—-]-l_—r+91(r, a,A); 0=r=r(al),
T(r,a,2) = i
1—m+9,(r, a, A); rm,Ad)=r<l,

ri(a, A) denotes the smallest positive root of the equation (2.4).

74C))

Proor. Since f(z)€R(x), we have TGP(a), and hence for some @(z) we

can write
L2 [14(1 4204 —22)z0(2)
4.3) Fa=—m [ [+2z0() ’

where @ (z) satisfies Schwarz’s lemma i.e. #(0)=0, and |®(z)|=1 for z€E.
Differentiating F(z) logarithmically with respect to z we get

zF'(z) _ o zg'(2) 2).(1—a)(zP(2)+ 22 P’ (2))

4, = - .
S F(z) g(z) +1 (14z2(2))(14+(1+204— 1) zP(2))
Now, on using Lemma 1 and the fact that zg(g) = l—l—r for g(z)€C(0), it follows

that
2
zF'(2) I =F
Re[ Q) 1= 1

1 -l—_-;_-+92(r, a,d) ry(@d)=r<l.

+6,(r,a, ), 0=r=r(a i),

Since the bounds used here are sharp, so the results of this theorem are sharp.
The proofs of the following theorems are similar to that of the above and hence,
can be omitted.

Theorem 3. Let F(z) be represented by (4.1) where f(z)ER(x), 0=a<1 and
g(2)eS*(B), 0=p<1, then F(z) is starlike for |z|<ry<1, where r, is the smallest
positive root of the equation

(4.6) T(r,a,B,2)=0
where
oy l=u(r, )+ 64(r,a, 2), 0=r=r(a A),
Wk Bd) = {l-p(r. B+ 0u(r, 20, 7), nwi)=1<r.

ry(x, ) is the same as stated in Theorem 2. This result is sharp.



106 R. N. Das and P. Singh:
The radius of starlikeness of certain subclasses of analytic functions

Theorem 4. Let F(z) be represented by (4.1), where f(z)€R(2), 0=a<1 and
g(z2)ER(P), 0=P<1, then F(z) is starlike for |z|<ro<1, where ry is the smallest
positive root of the equation:

T(r,a B, 2) =0,
1+0,(r,a, )—n(r, B), 0=r=rxp)
14 0,(r, 2, )=n(r, ), nxA)=r=<l

where ry(a, 2) is the same as in Theorem 2. This result is sharp.

T(r,a, B, 2) = {
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