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Introduction

In this paper we try to give a generalized probability theory. More than thirty
years ago A. N. KoLMoGOROV has composed the axiomatic theory of probability.
Since then many theories have born in order to generalize the theory of Kolmogorov.
Some of these wanted to satisfy practical needs. We think first of all the problems,
which were raised in quantum theory. For instance A. RENYI [7] has given a conditional
probability system, in which the conditional probability is the fundamental concept.

Our study is connected with the research of algebraic properties of the pro-
position lattice associated with a quantum physical experiment started by J. VON
NEUMANN [1].

It is known that in quantum theory the set of events associated with an experi-
ment is not a Boolean algebra, but an orthomodular lattice. As we know, the ortho-
modular lattice is the least general lattice, which is sutiable for the discription of
all physical propositional calculus.

V. VARADARAJAN, S. GUDDER and other authors have taken this point of view
into consideration, and gave a generalized probability theory [2], [10]. Without
reviewing their results in detail, we mention that they set out from the following
conditions:

(I) Let an orthomodular o-lattice L be given, calling its elements events. (2)
Let m be a probability measure on L. (3) An x:B-x(B)-homomorphism of the
o-algebra #(R') of Borel sets of the real line into % is called observable.
(It is clear that this concept may be regarded as a generalization of the random variable
in the classical probability theory.) (4) The expectation or average value of an

observable x is E(x)= f Am[x(dZ)]. For the details we refer the reader to [2].

Our system have (1) and (2) in common with the above system; we define
the set of events as an orthomodular atomistic o-lattice %, and interpret a probability
measure m on Z. Since % is atomistic, there is a simple way to define the random
variable. Denote Q (%) the atom space of . We say that a map x from Q(%) into the
real line R' is a random variable if Vx~'(B)c.Z for every B Borel set of R.
into the real line R! is a random variable if V x~1(B)c.% for every B Borel set of R

It is an important fact that in this manner the simple functions (sum, product, ...)
of random variables are random variables too.

In connection with . we mention that the collection of all closed subspaces
of a separable Hilbert space H is an orthomodular atomistic o-lattice. The order
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of this lattice is the inclusion and the complement of a subspace is defined as its
orthocomplement. This example gives us the usual representation of classical
quantum mechanics, and so it is the most important example for an orthomodular
lattice.
Our paper consists of five chapters:
1. Basic concepts, 2. System of events, 3. Random variables, 4. Probability mea-
sures and distributions, 5. The different kinds of the laws of large numbers.

1. Basic concepts

The lattice theoretical concept we use can be found in [6]. Let in this paragraph
% be a lattice. We shall employ the following notations:
The partial ordering of % will be denoted by =. Let S be an arbitrary subset
of &. The least upper bound and the greatest lower bound of the elements of S, if
they exist, are denoted by sup S=V S and inf S=AS respectively. As usual,
the least element and the greatest element of % will be denoted by 0 and 1 respect-
ively, provided that 0 and 1 exist. If % is orthocomplemented, then a' denotes
the orthocomplement of ac%.

We say that a, b€ ¥ are disjoint or orthogonal and we write a1 b if a=bt.
In an orthocomplemented lattice ¥ an SC.% subset is said to be orthogonal if
sy 18, for all sy, 5,€S.

Later we shall employ the following well known lemmas:

Lemma 1.1 ([6] pp. 132, Theorem 29.13) Let ¥ be an orthocomplemented lattice.
Then the following statements are equivalent:

() & is orthomodular
B) If a=b, then b=aV (bNa“).
(y) If a=b, then there exists c€L such that al c and a\ c=b.
Note that in (y) ¢ is unique and c¢=bAal=b—a.
Let a, b be elements of an orthocomplemented lattice . Then we say that
a commutes with & and we write aChb when a=(a/Ab)V(aNbt).

Lemma 1.2. ([6] pp. 166, Lemma 36.3.) Let & be an orthomodular lattice and
a,be?. Then

() aCh < bCa < bCat < a1Ch & aLtCht « biCat & biCa < aCh+.

(B) If a=b, then aCb.
(y) aLb if and only if aAb=0 and aCbh.

Lemma 1.3. ([6] pp. 167, Lemma 36.6.) If % is an orthomodular lattice and
a=b, b—a=bNat =0, then a=b.

Lemma 1.4. ([6] pp. 167, Lemma 36.7.) Let a, b and c be three elements of an
orthomodular lattice &. If some one of these three elements commutes with the other
two, then {a, b, c} is a distributive triple, that is the distributive laws hold for all per-
muta tions of a, b and c.
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If {a, b, ¢} is a distributive triple, we write (a, b, ¢)T. In an atomistic lattice
% we call the set of all atoms of % the atom space of % and denote it by Q(%).
If ac ¥, then denote the set of all p=a, p€Q(¥) atoms by o (a).

In our study we shall often concern ourselves with the properties of the prob-
ability measures (states) on an orthomodular lattice and the homomorphism of
lattices. The precise definitions of these concepts one can find in [2] or [11].

2. System of events

In the classical theory of probability the collection of events forms a g-Boolean
algebra of subsets of a set (space). It is known that this structure is not the absolute
one, namely there is a lattice theoretic treatment of probability theory and the
two theories are equivalent. About this one can read in the well known book of
D. A. Karpos [4].

Generally the lattice of all events is not atomistic, but it can be extended to
an atomistic Boolean algebra. Assume that % is an atomic Boolean algebra that
is 0€.% and each element other then 0 includes at least one atom. If 22(.%) denotes
the Boolean algebra of all subsets of Q(%) and Z(a)={qcQ(%)|g=a}, ac¥,
then & is isomorphic to a sublattice of 2(%) by the isomorphism: @: ¥ -2 (%),
P(x)=9(x), xX€Z.

It came to light that in general in an atomistic lattice two atoms are not ortho-
gonal. However, the investigation of the orthogonality is indispensable in our
respect.

We remark that the orthogonality is a characteristic property of a Boolean
algebra in the following sence:

Theorem 2.1. Let & be an orthocomplemented atomistic lattice and let Q(%)
be orthogonal. Then ¥ is a Boolean algebra and isomorphic to a sublattice of ? (%)
(power set of Q(%)) :

Proor. If 4 | Q(%), then AL denotes the collection of all elements pc Q(Z)
such that p | g for every g€ A. It is easy to verify that

A (at)=2(a)*+ for each ac¥ and

o (ah\b)=2(a)(\(b) for every a, beZ.
In (%) let * denote the complementation. We shall show that the mapping @(x)=
=4 (x), x€Z of & into (&) is a homomorphism. Since &/ (a)=/(b) if and
only if a=b, this will complete the proof. Thus, it will be sufficient to show that

(1) H(at) = o (a)
) (alb) = £ (a)N £ (b)
3) o (aVb) = o (a)U L(b).

It follows immediately from the assumptions that 7 (a)*=s/(a)’ therefore (1)
holds.

On the other hand o/ (aVbh)' = (a+Nb+)=oL(at)NA (bL)=sL(a) N AL (b) =
=(o (@)U L (b)), thus o (aVb)=sf(a)Us/(b), that is (3) holds. Thus the the-
orem is proved.
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It is obvious that there exists orthocomplemented atomistic lattice # such

that its atom space Q2(%) is not orthogonal.
Let us consider some examples for such lattices. In the following chapters

these examples will be necessary for us.
Example 2.2.

(@
'?l: ’ Q(gl) - {01, as, as, ad}'

0

1. dbra

Definition of the orthocomplementation in %,:
ay=af, a=ay
ay=ay, az=ai

1=0% 0=14%

Since a,%ai =a,, a, is not orthogonal to a;.

(b)
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&
() ={a;, 1 =41, ¥2, ...}

Definition of the orthocomplementation in %;:
o =il (=El £2 ...)

It is a well known fact that in quantum mechanics two observables are in general
not simultaneous measurable. This means that the propositions associated with
them can not be verified at the same time. If two propositions (events) a and b may
be verified at the same time then we call them compatible (written a<-b). Mathe-
matically this means that there are mutually disjoint propositions a,, b,, ¢ (in the
proposition lattice-orthomodular lattice) such that a=a,Ve¢, b=b,Vc.

It is clear that in a Boolean algebra any two elements are compatible. We shall
show that in a certain sence this is a characteristic property of a Boolean algebra.
(See theorem 2.4.)

The examination of compatibility plays an important role in axiomatic quantum
mechanics [10]. In this respect it is an interesting fact that in the atom space of
an atomistic orthomodular lattice the orthogonality, compatibility and commutativ-
ity (C) are equivalent.

Theorem 2.3. If £ is an atomistic orthomodular lattice and p#q; p, qcQ(%),
then the following statements are equivalent: (a) p 1 q. (b) p«~q. (c) pCq.

Proor. If p 1 g, then p=pV0 and ¢=¢V0, so p«-q, thatis (a)=(b).

If p<q, then plg—(pAg)=gq, thus (b)=(a).

If pLq, then pAg=0 and p=pAgq*, thus p=(pAq)V(pAg‘), so we have
pCq, that is (a)=(c).

Finally, if pCq, then p=(pAq)V(pAg+)=pAgt=q‘, thus p1 q; hence
(c)=(a).

Theorem 2.4. An arbitrary atomistic orthomodular lattice ¥ is a Boolean algebra
if and only if its elements are mutually compatible.

PROOF. In virtue of Theorem 2.3. if the elements of % are mutually compatible
then Q(%) is an orthogonal set, thus by Theorem 2.1. % is a Boolean algebra.

For completeness we prove the inverse direction too. If % is a Boolean al-
gebra and a, be?, then a—(aAb)=al(aAb):=al(atVbL)=bLtAa=bt, so
a—(aAb) L b. But in an orthomodular lattice c«d if and only if ¢c—(cAd).Ld
([2] pp. 73. Corollary 4.3.), thus a<-b. This completes the proof.

3. Random variable

Let (Q, o/, 2) be a probability space and let Z(R") be the o-field of all Borel
subsets of the real line R'. If x is a random variable on (Q, o7, ), then x~1(B),
Be#(R") is a o-homomorphism of #Z(R') into .2Z. Conversely, if /4 is a o-homo-
morphism of #(R') into o, then there exists a random variable x on (Q, <7, 2)
which satisfies the equation x~'(B)=h(B) for every B€#(R"). x is unique in the
following sence: if y is any other random variable with these properties and A=
={weQ|x(w)#y(w)}, then h(A4)=0.
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This allows one to define the random variable on (Q, &, ) as a o-homo-
morphism of Z(R') into /. This method is employed by many authors, but it
is not always comfortable.

In the introduction we refered to the concept of the random variable applied
in axiomatic quantum mechanics. This was examined by V. VARADARAJAN and
S. GUDDER (see [10], [2]). The main difficulty in their theory is the study of the al-
gebraic and topological structure of the space of all random variables (=o-homo-
morphisms of #(R') into an orthomodular lattice)

Let now .Z be an atomistic orthomodular lattice. We remark that in the following
(throughout the chapters 3—5) % denotes an atomistic orthomodular lattice unless
we say something else.

By a real-valued random variable on % we understand a map f from Q(%)
into the real line R' such that sup {p€ Q(Z)| f(p)€ B} Z for all BE#(R").

Let V denote the class of all random variables on . It is a natural question
whether the map sup f~'(B), BE#Z(R") generated by f€V will always be a g-homo-
morphism or not.

Let O denote the collection of all f€V for which sup f~*(B), Bc#(R') a o-
homomorphism of #(R") into #. A counter-example shows that in general O# V.

Theorem 3.1. If % is the lattice ¥, of example 2.2. (a), then there exists fEV
such that f¢O.

PrOOF. Let us define f as follows: f(a;)=i(i=1, 2, 3, 4). Since sup f~*({i})=aq
and a, | ag, supf~'({1}) Lsup/~*({3}) but {1}N{3}=0. This is a contradiction
if sup f~1(B), BE#(R") a o-homomorphism of #(R!) into .#, thus f¢ 0.

We have seen that if Q(%) is orthogonal, then % is a Boolean algebra. We
shall prove that in this case O=V. (Theorem 3.2.) If % is an antilattice, then we
can write down the random variables f€ V for which f€0. (Theorem 3.5).

An antilattice is a complemented lattice in which the supremum of any two
nonzero elements is 1.

Theorem 3.2. If Q(%) is orthogonal, then O=V.

PROOF.
a.) sup f~1(RY) =1, sup f~1(0)=0 hold for all feV.
b.) If Bi(\Bj=0; B;, B;¢ #(R"), then

supf~(B;) L supf~(B)).

Namely, it is known (see [5] pp. 598. Lemma 1.2.) that if b€ ¥, AS % and bl a
for all acA, then b_Lsup A. Since Z is atomistic, this implies

sup f~1(B;) L supf~'(B)).
c)If B, B, ..cB(RY), then A=supf'(UB,)=Vsupf-(B)=C. A=C,
because A=supf-1(U B,)=sup /-2 (B)=supf-1(B) (n=1,2,3,..). Hence
A=\ sup f~1(B,)=C. ¥ Converscly: A=C, because by C=\/supf~'(B,) C=p
for ;ll PESY(B,), so we have C=suplJf~*(B,)=sup /(U E‘,,)
This means that 4A=C, A=C, that isn A=C, !
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Theorem 3.3. If £ is an atomistic Boolean algebra, then O=V.

Proor. This immediately follows from the Theorem 3.2. and the fact that in
% any two atoms are orthogonal.

Returning now to Theorem 3.2., we can see that the orthogonality of Q(%)
was not used in the proof of c.) part, so the statement c.) is also true without it.
Thus the following theorem is valid:

Theorem 3.4. If f€V, then for arbitrary E,, E,, ... c#(R")
(1 supf~1(U E,) = V supf~(E,).

If moreover f€Q0, then
(2 supf (N E,) = /”\ sup f~Y(E,).

Theorem 3.5. Let ¥ be an antilattice having at least five elements. Then for
arbitrary f€V f€O if and only if there exists a€ R* such that f(p)=a for all pc Q(Z).

Proor. I. If f€V and f(p)=a for all p€Q(¥), then for arbitrary B€EZ(R")

1, if «€B
S fB) =10 i «t¢B

This means that x(B)=supf~*(B) is a -homomorphism of #Z(R!) into %, i.e.
feo.
II. If f€O, then
a.) if f(p)#f(q) for any two elements p, gc Q(Z%), then supf~*{f(p), f(@}L
Lsup f~1{f(r)}, where reQ(%), r#p,q, but {f(p), f(P}N{f(r)}=90, thus
f4 0. This is a contradiction, therefore there exist p, g€ Q(%) such that f(p)=f(g).
b.) If f(p)=f(q)=f(r), p#q, p#r, then supf~*{f(p)}Lsupf~{f(r)}. This
is a contradiction because of supf~!(f(p)}=1.
Thus, by a.) and b.) there exists «€ R* such that f(p)=a for all p€ Q(Z).
Let x be an arbitrary mapping of Z(R") into . We shall employ the following
notations:
I,={x|x(B)=sup f~'(B) for one f€V and for all B€#(R")}
H={x|x is a o-homomorphism of #(R’) into Z}.
ILy=1,"NH={x|x(B)=sup f~1(B) for one f€0 and for all B€#(RY)}.
It is clear that 7,£1,, I,S H. We shall show that these inclusions are proper.

Theorem 3.6. Generally 1,#1,, I,#H.

Proor. I. If & is a finite antilattice, then an arbitrary f: Q(%)-R* mappings
forms a random variable, but among these there exists g€ ¥ such that g¢ O. This
means that x=supg~'41,, ie. I, #I,.

II. Let & be as in I. and let p, g€ Q(Z), p 1 q. Then, by Theorem 2.3. p<=g.
It is easy to verify (see for example [11] pp. 118. Lemma 6.7.), that in this case there
exists x€ H such that p=x(E), g=x(F) for one E, FE#(R"). But by Theorem
3.5. x¢ I,, otherwise there exists z€ R' such that x(G)=1, if «€G and x(G)=0,
if ¢ G. This is a contradiction. Thus the theorem is proved.

10D
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Our problem now is to examine that in the classical case, when Z is a Boolean
algebra, what can be said about I,, I, and H.

Theorem 3.7. If % is an atomistic Boolean algebra, then I,=I,=H.

Proor. I. If & is an atomistic Boolean algebra, then by Theorem 3.3. 0=V,
thus evidently I,=I,.

II. To prove I,=H it will be sufficient to show that if x¢€ H, then there exists
an uniquely determined f€ V such that x(B)=sup f~*(B) for all BEZ(R").

f can be constructed as follows: Let ry, ry, ... be the sequence of all rational
numbers and E,=(—<e,r,). If peQ(Z), then let f(p)=inf {r,|p=x(E)}. If
PESM(ED, then f(p)EE,, p=x(E), pe(x(E)); (o (a)={peQ(Z)|p=a}) and
conversely, if p=x(E,), then f(p)€E,, p€f~*(E,). This implies f~(E,)=o(x(E)).
Since sup o (x(E))=x(E,), sup f~'(E,) exists and

_ sup fHE)=x(E)
Let s€RY then (—e,s)=|J) E, and supf~((—ee,s))=supf~ (U E)=

zrv’supf_l(Ek) =’ V‘x(Ej) =;:-(c(t- oo, s))’ thus Fe=<$
K L sllpf_l ((_. oo, s)) =x((.._ oo, S)).

Let 2 denote the collection of all subsets E of #(R') for which sup f~'(E)ce%,

x(E)=supf~Y(E). We shall prove that 2 forms a o¢-algebra. Since (—e=,s5)E€2

for all s€R!, therefore #(R)ESZ ie. Z=%(R'). Since x(R')=supf'(RY),

therefore (i) R'€2. (ii) If E, F€2, then x(EUF)=x(E)Vx(F)=supf~(E)V

Vsup f~1(F)=supf~Y(EUF), ie. EUFe2. (i) If E,,E,,..€2, then

x(UE)=V x(E)=Vsupf~ (E)=supf~ (U E,) ie |E€2. Since 2Z is
k k k

a Boolean algebra d(x(E'))=Q(E’)\.:f(x(E))=f‘1t(E') and we have
sup f~YENEZL and supf~UE')=x(E’) ie.

3 E'€2 if E€9D.
(iv) Let E, FED, then by (3)

X(ENF)=x(ENFY)=x(E)Ax(F)=x(E)Ax(F)L =
=sup /=1 (E)A(sup S ~*(F))* ={(sup /-1 (E))* Vsup £~ (F)}+ =
= {sup /1 (E’ U F)}* =sup f~(EN F')=sup [ (E\F),

therefore EN\ Fc2.

Thus 2 is a g-algebra indeed, which was to be proved. This means that x(E)=
=f~"1(E) for all E€c#(R"). Finally, we shall prove the uniqueness of f: Let g€V
and suppose that sup f~*(E)=sup g~ *(E) for all E€Z(R"). Assume that f(p)=
#g(p) for one peQ(Z). Then pef(f(p), pef*(g(p) and hence
sup f~(f(p))Asupf~*(g(p))=p.  However  supf~*(f(p))Asupg~*(g(p))=
=sup f~*(f(p)Ng(p))=0. Since this is a contradiction f(p)=gq(p) holds for
every p€ Q(%), thus the proof of the theorem is complete.

Let .Z be an orthomodular o-lattice. A subset %’ .% is said to be a Boolean
subalgebra if (i) £’ is a subalgebra of %, (ii) &’ is a Boolean algebra. If a Boolean
subalgebra .’ forms a o-lattice too, then it is called Boolean sub o-algebra. A Boolean
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algebra & is said to be separable if there exists a countable set DS .% such that
the smallest sub o-algebra of % containing D is & itself.

Varadarajan has proved (see [11] pp. 123, Lemma 6.16.) that a Boolean sub
g-algebra %’ is separable if and only if there exists a e-homomorphism of #(R")
onto &’. If & is an atomistic orthomodular ¢-lattice and x€ H, then from this
it is obvious that % (x) is a Boolean subalgebra of %, where #(x) is the range of x.
In the following theorem we shall show that if x€7,, then Z(x) is isomorphic to
a sublattice of (%), the power set of Q(2). .

Theorem 3.8. If xc1,, then

(1) #(x) is a Boolean sub o-algebra of ¥.

(2) The map ®:a—~ < (a), acR(x) is an isomorphism of R(x) onto one sublattice
of (%), ie.

(@) o (at)=Q(ZL)\A(a)

(b) o (a\b)=oA (a)=Z(b)

(¢) o (aVb)=Z(a)o(b)

(d) @ is a one-one mapping.

ProofF. To prove (1) it will be sufficient to show that (a, b, )T for all
a, b, c€ R (x).

I. Let a, b, c€R(x) i.e. a=x(A), b=x(B), c=x(C); A, B, CE#(R"). Then we have
(aVb)Ae=x((AUB)NC)=x (ANC)UBNC))=x(ANC)Vx(BNC)=(alc)V
V(bAec). Thus (a, b, c)T.

II. (2)/(b) and (2)/(d) are evident. If ac%(x), then a=x(E) for some EcZ#(RY)
and al=x(E’)=x(R"\\E). Since x(E)=supf~1(E), f€0, therefore f~'(E)E
C o/ (x(E)). Furthermore x(E’)=supf~1(E’) and we have «/(x(E’))2/f ' (E’).
But o (x(E"))=of (x(E)*)=9/ (x(E))* S Q(L)\(x(E))=f"*(E"), where o (y)*=
={p€Q(Z)|p Lq for all gc=/(y)}. Then o (x(E"))=f"Y(E"), o(x(E))=f"2(E),
thus (2)/(a) holds.

If abER(x), then A(aVb)=o(x(E)Vx(F))=oL(x(EUF))=f"YEUF)=
=f~"YE)UfY(F)=o (x(E))U o (x(F)) =L (a)Jo#(b) ie. (2)/(c) holds. This
completes the proof.

Let fi, fo, ..., f,€V and let Y (x,, ..., x,): R"~R' be a real valued function
of n variables. Then let Yy (f;,...,f,) denote the mapping Q(%)—-R' such that
V(S s S =Y (/D) ... fu(p)) for every peQ(Z). This is a natural way
to define some function of » random variables, but we have to pose the question
whether ¥ (i, ..., f,) is an element of V if f3, ..., f,€V. The answer depends on
V¥ and the algebraic properties of % (Q), where () is the class of all subsets
A of Q(%) for which sup A€.Z.

Theorem 3.9. If ¥(Q) is a o-algebra and Y (x,, ..., X,) is a Borel function, then
=v(fy, ..., LYEV for every fy, ..., [,EV.

PROOF. Since (Q(%), & (R)) is a measurable space and f,, ..., f, & (Q) measur-
able functions, therefore f=y(f,, ..., f,) is also & (Q) measurable, i.e. f~1(B)=
®(Y~1(B)eF(Q) for all BEA(R'), where ®(p)=(fi(p). fo(p), .... [(P)ER",
pEQ(Z). Thus f€V, which was to be proved.

10*
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Theorem 3.10. If f, 26V, fi—/fi€V hold for any f,, fo€V, then ¥(Q) is a
a-algebra.

PROOF. Let A4,, 4,€%(Q) and let f; be the characteristic function of 4;(i=1, 2):
filp)=1 if pcA4; and fi(p)=0 if p¢A; (i=1,2). It is plausible that f,, f, are
random variables, furthermore f=f, i€V, g=fi—f,€V by assumption. Hence
A NA,=f 1 (1)eFL(Q) and A\ A,=g 1 (1)eF(Q). Since £ forms a o-lattice,
therefore A,, Ay, ...€%(Q) implies sup (U 4;)=Vsup 4;€ZL ie. |JA,cL(Q).

i i i

Besides this Q(Z)e&(RQ), thus ¥(Q) is a o-algebra indeed.

By the Theorems 3.9. and 3.10. we can say that the Borel functions of random
variables are themselves random variables if and only if %(Q) is a g-algebra. This
condition holds evidently if % is complete.

Let us return now to the question under what conditions O=V is valid. In
the following theorem we shall give a necessary and sufficient condition for O=V.

Theorem 3.11. If &(Q) forms an algebra, then O=V holds if and only if &
is a Boolean algebra.

Proor. It will be sufficient to show that O=V¥ implies that & is a Boolean
algebra, since the converse is true by Theorem 3.3. Let p, g€ Q(Z), f(p)=0 and
let f(r)=1 for all re Q(Z)\ p. Then evidently f€ V=0, ie. supf~1(B), B Z(R")
is a o-homomorphism. Hence supf~*(0)_Lsupf “(1), thus p L sup (Q(.'Z’)\p)
This means that p | g for any two elements of Q(%), thus by Theorem 2.1. .Z is
a Boolean algebra.

4. Probability measures and distributions

In the following two chapters % will denote an atomistic orthomodular o-
lattice again, unless we shall say someone else.

Let x4 be a probability measure on .. Gudder has shown (see [2] pp. 98.) that
generally u is not subadditive; that is u(a\Vb)=pu(a)+pu(b) do not hold for all
a, be?.

In the conventional theory a random variable ¢ always generates a measure
?: on Z(R") in the following sence:

P(E) = P(EY(E)), E€B(RY

where ¢ is defined over the probability space (2, %, 2). This is not necessary true
in our generalized theory, as the following theorem shows.

Theorem 4.1. Let f€V and let i be a probability measure on . Then m*|[a, b)=
=u(supf'[a, b)) is a map of the family of all half-intervals [a, b)C R' into
[0, 1] R'. In general m* is non additive.

Proor. We shall prove our statement by means of a counter-example.
Let .# be as the lattice %, in Example 2.2/(a) and let u(a)=1/2 (i=1, 2, 3, 4),
u(1)=1, u(0)=0. Then pu is a probability measure on . The atom space: Q(¥)=
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={a,, a,, a3, as}. If f(a)=i (1'=I 2,3,4), then

'

) m supf‘ ; ;] =1

(2) ,u[supf— ; ;] =1
SEE Y 1

(3) 7 SUPf ‘I 3]J b

By (1), (2) and (3)

v (lz 3= [z 3+ (5 3)

If feV, then the function F(x)=p (sup f~'(—<=,x)) is called the distribution
Sfunction of f. Ahead of examination of distribution functions we prove a property
of the probability measure u, which is well known in the classical measure theory.

Theorem 4.2. Let & be an orthomodular c-lattice. Then for all probability meas-
ures u on & hold

) If ay=a,=...; @€, then lim p(a,)=p(A a,).
@) If by=b,=..; bEZ, then lim p(b)=p(V b,).

ProoF. Since & is orthomodular, (1)<(2). Furthermore, if
3) ,l’lm u(a,)=0 for arbitrary a,=a,=..., A\ a,=0, then (3) implies (1). Namely,

n
if ayj=a,=... and A a,=a, then we have
n

a;—a=a,—a=..and A(a,—a)=A(a,Aat)=atA\(Aa,)=0
From this we get ; ' g
lim u(a,—a) = lim (u(a,)—p(a@) =0, ie. ,!_1}{1, u(a,) = p(a).

f==oo

Coming to the proof of (3), let a;=a,=..., A a,=0. We shall prove that
@ c =V @=a,) =V (@A),

Evidently a,= V/ (a,\a;-,)=b.
nm]l

By Lemma 1.3. (4) holds if a,—b=0. The proof of a,—b=0 1is the following:
We have

a;—b = a,—{(a;Nag)V(a,Vaz)V...} = a;A(ai Vag) A\ (ag Vay)A...
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Let us see elements a,, a-, a,.,. It is obvious that a,Ca,,,, i.e. a, commutes with
a,.1, because a,=a,.,. In a similar manner a;} Ca,.,. (see Lemma 1.2.). Hence
by Lemma 1.4. we get (a,, a;", @,+,) T, thus a,A(a;Va,.)=(a,Aa;)V(a,\a,4y)=
=a,Na,.,. By this equality

a,—b = a;A(ai-Vagx)A(ag Vag)A...= ¢,

a,—b = a;ANa;\(ag-Vay)\(aFVa)A...= ¢,

a;,—b = a;AazNagA\(agVa)A(atVagA...= c3

a,—b = a,AagA...Aa,N(atVa,, )\t ,Va, DA...= c,

We shall prove that R = ,7\ a,.

n=1 n=1
We have c,=aq;Aa;A...Aa, (n=1,2,...), hence A c,=A (q;Aa:/\...\a)=A a,,
thus (4) is true. In equality (4) (a,—a,+,) L (@,—a,+1) (m#=n), because if for example
m<=n, then a,=a,,, and hence

(@ Aat )t = aitVa,,, = a,Aagy,.
Then p(a)= le(a.—a.u)-

Generally, if b=a, then u(b—a)=u(b)—pu(a) because b=aV(b—a) and
a | (b—a). Then, obviously

) = > p@,=aysn) = Z (4(a)—n(@n11),
i.e. v
uli_fll u(a,) = .1}_'2 kZ u(ay—ax.y) = 0.
This completes the proof.
By Theorem 4.2. one can find some elementary properties of distribution function.

Theorem 4.3. If F(x) is the distribution function of f€ V with respect to the measure
u, then

(@) F(x) is monotone increasing.
(b) F(x) is continuos from the left.
(c) If f€V, then lim F(x)=1,

X+ oo

if f€0, then _.li_m F(x)=0.
PrOOF. (a) If x>y, then

a = sup f~}(— o, x) = supf~(—==, y) = b,
p(@) = p(b) ie. F(x)= F(y).

thus
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(b) Let h=hy=..., h,>0 (n=1,2,...) and }iinh,,=0. Then (—e<,x)=
=|J(—e, x—h,), thus by Theorem 3.4.

sup f~1(—oo, x) = V sup f~1(—e<, x—h,) = Ya,,

a, = sup f~1(— oo, x—h,).
Furthermore a,=a,=..., so by Theorem 4.2. we have

F(x) = p(supf~*(— =, x)) = lim u(a,) = lim F(x—h,).

where

() I. Let x;,X,,...€R* with x;=x,=... and lim x,=+. Then
Vsup (-, x,)=1 ie.

lim F(x) = (1) = 1.

II; Let y;, s, ...€R' with y,=y,=... and lim y,=—<. Suppose that

n-+oo

f€0. Then by Theorem 34. Asupf (=<, y)=sup S} (==, y))=0.
Hence lim F(y,) = lim p(sup f “1(—eo, y)) = u(A sup f~*(— e, y,)). Thus the the-

orem is proved.

Let F(x) be the distribution function of f€ ¥ with respect to the probability
measure pu. Then let #=2% denote the Lebesgue—Stieltjes measure mduocd by
F(x). If m*(B)=pu(supf ‘I(B)) BGQ(R‘), then we know that generally m* is
not a measure. However, if f€0, then m* is a measure on #(R"), and for all
Be#(RY) m*(B)=2(B).

Theorem 4.4. If f€O and p is a probability measure on ¥, then m*(B)=
=u(sup f~2(B)), BE#(R") is a measure on #(R") and for all BEAB(RY) m*(B)=
=2%(B).

ProoF. The proof is very simple and so it will not be presented here.

5. The different kinds of the laws of large numbers

In any probability theory the laws of large numbers have theoretical importance.
These laws show the relationships between theoretics and practice.

In this chapter we shall give some fundamental concepts (expectation, variance,
independence, different types of convergence, ...). Afterward we shall prove a simple
form of the laws of large numbers for uncorrelated random variables.

Let f€ V¥V and let F(x) be the distribution function of f with respect to the pro-
bability measure u. Then the Lebesgue—Stieltjes integral [xdF(x)=E(f) is
called the expectation of f, provided that this integral exists. The variance D*(f)

of f is defined by
D*(f) = E(Lf—E(N)P).
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The random variables f,, f,, ..., f,€V are independent with respect to the probability
measure u if

WA sup /i ED) = IT (sup £ (E)

holds for arbitrary E;€#(R'), i=1,2,...,n. The random variables f,, f;, ...€V
are independent if any » of them are independent for n=2,3,....If f,, f;, ..., f,€V,
then the function

M(_f\1 sup fil(— e, xi)) m Fa g it o B Fioviin i)
is called the joint distribution function of the random variables f,, f;, ..., f,. It
follows from the definition that if f;, f;, ..., f,€ V are independent, then
Fro po o r X1y Xay ooy X,) = Fp (x0) Fp (X5) ... F (x,),

where x;, X,, ..., X, are arbitrary real numbers and F; (x;) is the distribution func-

tion of f.
The different kinds of the laws of large numbers are based on different types

of convergence.
If g€ (i=1,2,...), then let

limsup a; = 7\.\ (@;Va;,V...).
j=1

If f,, f€V (n=1,2,...) and
lim sup {sup (f,—/) " (R™\ [z, e])} = 0

holds for all ¢>0 real numbers, then we say that f, converges everywhere to f.
f, converges almost everywhere (n) to f if

p(lim sup [sup (f,—f)"HR™\[-& &)]) =0 forall &=0.
We say that f,—~f in measure (u) if
u(sup (f,—f) " (R"\\[¢, €])) = O(n —~=<) forall &=0.
Note that if f,, f€0 (n=1,2,...), then f,—f in measure (u) if and only if
% _(R™\[—¢,¢&]) = 0(n +==) forevery &=0.
This follows immediately from the Theorem 4.4. If f,, f¢ V and lim E((f,—/)¥=0,

then we say that f,—f in mean.
Now we prove a simple but very useful inequality.

Theorem 5.1. If a(x) is an increasing and strictly positive function on (0, <),
and o(x)=u(—x), xERY, then for arbitrary f€V such that E(x(f))<< holds

PF(R\[—¢, ¢]) = -E&%s{)) for each &= 0.
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Proor. Evidently
E(@(f)) = [ex)dF(x) = [ a(x)dF;(x) = a(e) P, (x| = ¢).
|x|>e
By using this inequality easy to get a simple form of the laws of large numbers.
fis fos ooy [LEV is said to be uncorrelated if D*(fi+fy+...1)= 2 D*(f).
i=1

¢ Gz, ...€V is called uncorrelated if every finite subsequence of {g,, g,, ...} is
uncorrelated. If f€V, then m*(B)=p(sup f~1(B)), Bc#(R") is called the pro-
bability distribution of f with respect to the probability measure u. A family of random
variables having the same distribution is said to be identically distributed.

Theorem 5.2. If f,, fs, ... are identically distributed and uncorrelated random
variables, then

Ps5,-es,) (R\[—&,€) =0 (n —<)

Jor all ¢>0, where S,=fi+fi+...+f,.
ProoF. By Theorem 5.1.

5 sy (RN\[—5, o = = ESH) _

= ok etn’
o D“(}}-&-{g-l;...-f-f,,) c nD:(;'l) P R S
e*n ne
which was to be proved.
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