On polynomials with integer coefficients and
given discriminant, IV

By K. GYORY (Debrecen)

1. Introduction

Let us call the polynomials f, f*€Z[x] equivalent if f*(x)=f(x+a) for some
acZ. In [11] we proved that if D0 is a given integer then there are only finitely
many pairwise non-equivalent monic polynomials f€Z[x] with discriminant
D(f)=D and such a system of polynomials can be effectively determined. In [12]
we showed that for any monic polynomial f€ Z[x] of degree k=2 with non-zero
discriminant D k=deg (f)=2+2 (log3)~'log |D| holds and there is a poly-
nomial f* equivalent to f such that the maximum | f*| of the absolute values of
the coefficients of f* satisfies

(¢)) I.£*(l < exp exp {4(log|D[)**}.

In [13] this last statement was proved, as a special case of a more general result,
with the estimate

) I£*] = exp {c;|D[*},

where x>9(k—1)(k—2)/2 and ¢, denotes an effectively computable positive
constant depending only on k and x.

In our papers [10], [11], [12], [13] and [14] various applications of these results
were given to reducibility of polynomials of the form g( f(x)), to polynomials
of given discriminant, to algebraic numbers of given discriminant and to Dio-
phantine equations.

In Section 2 of the present paper we generalize some theorems of [11], [12]
and [13] to polynomials with algebraic integer coefficients and given discriminant.
In Section 3 some applications of these results are presented to algebraic integers
with given relative discriminant over a fixed algebraic number field.

p-adic generalizations and further applications are given in Part V [15] and
in a joint paper of Z. Z. PApp and the author [17].

2. Polynomials with algebraic integer coefficients and given discriminant

Throughout this paper L denotes an algebraic number field of degree n=1
with ring of integers Z,. Let D, be the absolute value of the discriminant of L.
If feZ,[x] and f*(x)=f(x+a) for some acZ;, then for their discriminants
D(f)=D(f") holds. Such polynomials f, f*€Z,[x] will be called Z -equivalent.
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As usual, || will denote the maximum absolute value of the conjugates of
an algebraic number « and | F| will signify the maximum absolute value of the con-
jugates of the coefficients of a polynomial F(x) with algebraic coefficients.

The following theorem contains Theorem 2 of [12], Corollary 1.6 of [13] and
Corollary 1.3 of [14]. In the special case L=Q (3) is obviously sharper than (2).

Theorem 1. Let L be as above, and let 6 be a non-zero integer in L with
INLio(®)|=d. If feZ,[x] is a monic polynomial of degree k=3 with discriminant o,
then it is Zy-equivalent to a polynomial f* for which

1
3) 77 < (87 exp {(Snk®)%m*((dD%)*'2 (log dD )= -2}
holds.
Theorem 1 is still true for k=2 and, by Theorem 2, in this case we have
3) |f*| < (IB]/2+ DYy + 1)

instead of (3). In what follows, all the consequences will be stated only for k=3,
however in view of (3") they remain valid even for k=2 with other estimates.

We note that in Theorem 1 and in its corollaries one may choose d=|d|".

Corollary 1.1. Let L be as in Theorem 1. Suppose that we are given a natural
number k=2 and a non-zero 60€Z;. Then there are only finitely many pairwise Z;
non-equivalent monic polynomials f€Z [x] with deg(f)=k and D(f)=d and
such a system of polynomials can be effectively determined.

This corollary is a generalization of certain earlier results obtained in [11],
[12] and [13].

Denote by fU)(x) the j-th derivative of a polynomial f(x). The next corollary
generalizes Corollary 1.7 of [13].

Corollary 1.2. Let L be as in Theorem 1. If fc Z,[x] is a monic polynomial of
degree k=3 with discriminant D(f)=0#0 and |Np,(d)|=d, then

2(k—-j-1)

ID(fD)| < 8] *' exp{ca((dD})**(log dDLy™ k-1 *-2} <
< exp {2¢.(([3]" D§)*/2 (log (3] D)y )pk—1 k-2
for any 0=j=k—2, where cy=2k(5nk®*"

Corollary 1.3. Let f(x)=x*+a,x*~'+...+a,€Z,[x] be a polynomial of degree
k=3 with discriminant 6#0 and let |Ny,,(0)|=d. If for some i, 1=i=k, |a| =
=Af* with A4;=0 and 0=t<ilk, then

@

min —1—. max .L,
&) la,| < [kjfl]{(k:r)m'n (i-k1) 4 oryg, (== ‘)} (=)

for each j, 1=j=k, where T denotes the expression occurring on the right side of
inequality (3).

Corollary 1.3 generalizes some results of Parts IT and IIT (see [12] and [13])
obtained in the special case L=0Q.
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By using the argument employed at the end of the proof of Theorem 1 of [13]
we could easily extend Theorem 1 (and its corollaries) to polynomials with discri-
minant 6 =0 to get a generalization of Theorem 1 of [13]. We now generalize Theorem 1
of the present paper in another direction which also includes the case §=0.

Denote by P(x)€Z,[x] the squarefree monic polynomial divisor of maximal
degree') of a monic polynomial f€Z,[x]. If D(f)#0 we have obviously P,=f.
For linear P, let D(P;)=1.

Theorem 1 is an immediate consequence of the following result.

Theorem 2. Let L be defined as in Theorem 1, and let & be a non-zero integer
in L with [Ny (5)[‘-5d (d=2). If feZ,[x] is a monic polynomial of degree k=2
with deg (P;)=I and D(P;)=4d, then f is Z,-equivalent to a polynomial f* satis-
fying

k
©)  1F7 = 3" exp {(SnI*y*" - (k/1)((@dD})** log dD, ! -0 1-)
for 1=3 and
©) ¥ < (B2 + (D2 + 1)
fO!‘ [<=3.

It is clear that, by applying Theorem 2 in place of Theorem 1, Corollaries
1.1, 1.2 and 1.3 can be extended to polynomials with discriminant =0 too.

3. Applications to algebraic integers with given relative discriminant

Suppose again that L is an algebraic number field of degree n=1 and let
D, denote the absolute value of its discriminant. As usual, denote by Dj ), (2)
and Np,.(«), or, more briefly, by D(x) and N(x) the discriminant and the norm
of an algebraic number « relative to the extension L(«)/L. If « is an algebraic in-
teger with minimal polynomial f over L, then o and f have the same degree, say
k, over L, D@)=D(f), N(@)=(~1*f0), [fI=Qa)* and [a|=k]7].

We shall say that the algebraic integers a and o* are Z, -equivalent if « —a*€Z; .
In this case their minimal polynomials over L are also Z,-equivalent.

Theorems 3A and 4 are immediate consequences of Theorem 1 and Corol-
lary 1.3 respectively.

Theorem 3A. Let L be as above. If « is an algebraic integer with degree k=3
and discriminant 6 over L and |N,o(8)|=d, then there exists an o™ Z, -equivalent
to o such that

i S
™ o] < [6]"*~V exp {(Snk?)*"™ (dD})** (log dD,)™ -1 *=2},

In fact Theorem 1 yields a slightly weaker estimate for |*| in terms of [3].
However, if we apply Theorem 2 to the minimal polynomial f of « over L, (25)
implies (7).

') In other words P; is the monic polynomial divisor of maximal degree of f over Z. such
that D(P;)#=0.
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Theorem 3A generalizes and improves Theorem 3 of [13]*), obtained in the
special case L= Q.

If we take into consideration even the discriminant of the number field generated
by « over L, we get a sharper estimate for |¢*| in terms of d.

Theorem 3B. Let L be as in Theorem 3A, and let K be an extension of degree k=3
of L with discriminant Dx=Dyg,,. If a is an integer in K with Dg; (2)=0#0
and |Ny;o(0)|=d, then there exists an o €K, Z-equivalent to o, for which

I 5%,
(3) ‘E;l - Igl k(k-1) exp {(Scs)w(c,+s)(|pxl{]0g [DKDuk)a(t-l)(t-s)(lpxla(t—l)(t-a){2+ logd)}

holds, where cy=nk(k—1)(k—2).
Denoting by f the minimal polynomial of o over L, (8) immediately follows
from (23). In particular if K/L is normal, it is easy to obtain

1
@) (@] < [3]"®= exp {(Snk)®®+2 | Dy| (log | Dx)**~* - (|Dx]/* + log d))

from the proof of Theorem 2.
An easy corollary of Theorem 3A and (3’) is the following

Corollary 3.1. Let L be as in Theorem 3A. Suppose that we are given a natural
number k=2 and a non-zero integer d in L. Then there are only finitely many pairwise
Z; non-equivalent algebraic integers with degree k and discriminant & over L and
such a system of algebraic integers can be effectively determined.

In the special case L= this was earlier proved in [I11] and, in an ineffec-
tive form, in [6].

We note that Corollary 3.1 can be deduced, in an ineffective form, from an
ineffective theorem of B. J. BIRCH and J. R. MERRIMAN [6] on binary forms with
given degree and given discriminant, combining it with Siegel’s theorem concerning
the number of solutions of the generalized Thue equation in integers of an al-
gebraic number field [25]. (For an effective version of Siegel’s theorem see A. BAKER
[4] and A. BAKER and J. COATEs [5]).

Denote by Dy, the relative discriminant of K/L. As is well-known (see for
example H. Hasse [18]), for every primitive integral element o of K/L the principal
ideal generated by Dy, (%) can be written as

) (DK!L('I)) = J*(a) Dxu,

with an integral ideal J(x) in L. J(«) is called the index of « with respect to K/L
or the unessential divisor of the discriminant Dg,; (x). Evidently ae has the same
index for any unit ¢ of L.

The next corollary which contains Corollary 3.2 of [13] as a special case will
be deduced from Theorem 3B.

Corollary 3.2. Let L be as in Theorem 3A, I a non-zero integral ideal in L with
norm =M and K an extension of degree k=3 of L with discriminant Dg=Dyg,.

*) Added in proof. Very recently L. A. TRELINA (Mat. Zametki 21 (1977), 289—296) has obtai-
ned a p-adic analogue of this theorem of [13].
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Suppose that there is an integer o in K with index 3. Then o is Z-equivalent to an
algebraic integer of the form o*e, where ¢ is a unit in L and

'a_tl = exp {(SHk”)’““"'(IDxr(log IDKI).x)s(k-n(t-z)qpx's(t-l)(x-sm_Hog ‘M)}

An important consequence of Corollary 3.2 is that up to the obvious multi-
plications by units of L there are only finitely many pairwise Z; non-equivalent
integers in K with a given index J><0 and such a system of integers can be effectively
determined.

By a theorem of E. ARTIN [2] the above relative extension K/L has a relative
integral basis if and only if the index of a primitive integral element o of K with
respect to K/L is principal. Consequently, if Dy, is principal and for example the
class number of L/Q is odd, then K/L has a relative integral basis (for further
results and references see e.g. W. NARKIEWICZ [19]). Moreover, as is well-known,
numerous special relative extensions K/L have integral bases of the form
1, 0% ...,2* ' with a suitable x€Z; when Zgx=2Z,[«]. For earlier results the
reader may consult [19]. Recently J. J. PAyAn [20], [21], M. N. Gras [8], [9],
G. ARCHINARD [1] and P. A. B. PLEASANTS [22] have obtained results connected with
the existence of such an integral basis.*) The relative extensions having this property
are generally called monogenic.

Corollary 3.2 yields the following general result on monogenic extensions.

Corollary 3.3. Let L be an algebraic number field of degree n=1, and let K
be an extension of degree k=3 of L with discriminant Dg=Dyg,,. Suppose that
Zyg=2Z,|a] for some acZy. Then o is Z-equivalent to an algebraic integer of the
form o*e, where ¢ is a unit in L and

Ir&‘-l(-l < exp {(Snka)Mnkﬁ(lelam(log |Dxi)nk)a{k—1)(k—2)}_

This provides a general and effective algorithm for deciding whether a relative
extension K/L is monogenic or not and for determining all x€Z; for which
Zy=2Z[a]. . : ; ) \

The special case L=Q 1is of particular interest. Corollary 3.3 generalizes
and improves our earlier result obtained in the case L=Q ([13], Corollary 3.3).

Corollary 1.3 implies the following

Theorem 4. Let L be as in Theorem 3A, and let o be an algebraic integer of relative
degree k=3 with norm p and discriminant 6 over L such that |N,,(6)|=d. Denote
by f(x) the minimal polynomial of » over L. Let N=1 and 0=t<1 be real numbers
satisfving

| = N|fT.
Then

d 1 1
10) [ = k(7] < kit 1) {(Tymin @=om 4 g™ (=am- o (k)

where T denotes the expression occurring on the right side of (3).
Consequently, for any given algebraic number field L there are only finitely
many algebraic integers with a given degree, a given norm and a given discriminant

*) Added in proof. Recently B. KNIGHT has obtained such a result in the case L=0Q, k=4
(see W. M. ScumipT, Proc. Internat. Congress Math., Vancouver, 1974, Vol. I, pp. 177—185.)
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over L and these integers can be effectively determined. In the special case L=Q
this was proved in [11] (see also [12] and [13]).

The next theorem provides an explicit upper bound for [« depending only
on |Npo(u)| instead of |u/.

Theorem 5. Let L be as in Theorem 3A, and let o be an algebraic integer with
degree k=3, with norm p and discriminant & over L. Suppose that |Np;o(8)|=d and
Npjo(w)|=N’. Then we have

i;f < exp {(Snk"’)m"*“’ ((dD§)*3(log dD,)™)**-V[log (8| N") +

11
(11) + ((dDk)*2 (log dD )y~ =21},

Choosing d=|3/" in Theorem 5, we immediately get the following
Corollary. Let L be defined as in Theorem 3A. If ¢ is an algebraic unit with degree
k=3 and discriminant D(g) over L, then
!_gl < exp {C,,ID(S)I"“_U(QHS_?)(IOg ID(S)l)&uk'}
and, provided that |D(e)|=exp {9k},

D()| = c;(log Je])*k-1 Gk-m -

hold with effectively computable positive constants c,, ¢, depending only on k, n and D, .
By virtue of (11) it is easy to compute explicit values for ¢, and ¢;.
We remark that in the special case L=Q Theorem 4 gives a slightly sharper

estimate for gl. (10) implies
}_8! < exp {2k (SkS)wkn(’D(a)ls)'z(log |D(8)|)k)3(k_1) (k—2)}

for any algebraic unit ¢ of degree k=3 and discriminant D(¢) over Q. This sharpens
the estimates of Corollary 2.2 of [13] (see also the Corollary to Theorem 2 of [14]).

4. A preliminary result

Let M be an algebraic number field of degree m with s real and 2t complex
conjugate fields. Write r=s+¢—1. Let D,, denote the absolute value of the dis-
criminant of M.

The proof of Theorem 2 depends on the following result which is proved in
our paper [16].

Proposition. Let M be as above, and let vy, 7,, ys be non-zero integers in M
with max (ly:ih=G. If ©,, @, and O4 are non-zero integers of M satisfying

7101+ 720, +7,0, =0 and mlax {INM}Q(QE)I} =N,
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then there exists a unit ¢ in M such that
max (8;2]) < exp {c; Dy (108 2D3)*"~* (D} +og (GN)},

g2m
where Cs = F[lﬁm(r+3)]‘“"+”.

This proposition sharpens and generalizes Lemma 4 of [12] and Lemma 3
of [13]. Its proof is based on a recent explicit inequality of A. J. VAN DER POORTEN
and J. H. LoxToN [23], [24] on linear forms in the logarithms of algebraic numbers.

5. Proofs

PROOF OF THEOREM 2. Write
Jx) = (x—a) ... (x — ).

Suppose, for convenience, that the roots of P, are oy, ..., o;. The case /=1 being
trivial, we assume that /=2. Then we have

(12) DPp)= [JI (aj—a)*=0.

1si=<j=l

First suppose that /=3. Choose any three from among &, ..., a;. We may
assume without loss of generality that these are oy, o, ®3. Putting M =L (o, ¢y, o3)
and m=[M: Q], from (12) we get

(13) [Naggo(ety— )| = |Npgjo(O)P/2 = dmi2
for any 1=i<j=3. Further we have
(14) (otg — aty) + (o5 — o) + (2, — &tg) = 0.

Let D,, denote the absolute value of the discriminant of M and r the free rank
of the group of units of M. Apply now the Proposition of Section 4 to (14) and
(13). By this Proposition there is a unit & and integers d; in M such that

(15) Otj—a,=£5ﬂ
for any 1=i<j=3 and
(16) ,max (0,]) < exp{c; Dy (log 2Dy)*"~*(D}f* +logd)} = T,

2m
where c-,=-—8——_- 16m(r +3)]5¢+2),
2nm™—*

Let M;=L(%) and m;=[M;: Q] for i=1, ...,I. Denote by D, the absolute
value of the discriminant of M;. Put Dzmtax Dy, andlet D=2 if L(, ..., %)=0.

Then
(17) Dy| DY D™ Dy = DH-DU-

11D



162 K. Gyéry

holds (see H. M. STARK [27]). (16) and (17) imply
Tl < exp {CS(D(IOSD)M)S(I—1)(1-2)(_03(!-—1)(!-2);‘2+log d)} = Tz'
where  ¢g = 2¢§~(12(/— 1) (I — 2))**~1(4¢y)**? and ¢, = nl(I—1)(I-2).

We note that if P, is irreducible over Z; and the extensions M;/L are normal
then we may take T,=7, replacing D, in T, with D, r+1 with m and m with nl.
If />3, we may repeat the above argument first for ay—ay, a;—oy, a;—a
with j=4, ...,/ then for a;—o;, oy—a,, a;—0a, with 3=i<j. Then we get in the
same way as in [11] and [12] that
;=0 = eQy;
for any 1=i<j=I, where

max (ED < T2+l and n}a{x(’g?lb < TSes-1,
Thus it follows from (12) that
&-Dwms I 0z

h 1=i<j=)
whence

faw T el

ol < B0 7,
This implies

1
(18) ai—a| < [8] 'OV .TSo = T,
J

forany l=i<j=I
If /=2, (18) immediately follows from (12) with 7,=1 instead of the above T,.
Write now o,+...+®,=a,, where obviously a,€Z,. By (18) we have?)

(19) lo; = a,+p;
for i=1,..., 1, B; being integers such that
(20) max () < (1= 7T;.

There is an integral basis 1, @,, ..., ®, for L with the property

max(|073|) = nzn(u-l)DEﬂ-l){l
5

(see [12]). Represent a, in such a basis. We can easily see that there is an a,€Z;
congruent to @, (mod /) for which

(21) [al e a'n’2"("“)D{_"’—W’_

?) The author is indebted to Z. Z. PApp for his remark that in the proof of Theorem 2
of Part II (see [12], p. 139) one can use a deduction of the type (18)=>(19) in place of employing
an integral basis. This observation enables us to slightly simplify the above deduction (18)=(22),
(23) too.
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Write a,=la+a,. Then a€Z, . Since each o, j=>/, is equal to one of the o;, 1=i=],
by (19), (20), (21) and D |D every &; can be written in the form

(22) ai=a+?i! i= l: ---:k)
where 7,, ..., y, are algebraic integers satisfying
(23)

a !
max (I?_:D = m Iu-1) exp {(Sc,)a"“'“’(ﬂ(logD)"‘)s“'““‘"(Ds““”(“m’ +log d)}

1=i=k

if /=3 and
= max () < 12+ (2Dy2y*
if I=2.

In the case /=1 we may choose ;=0 in (22) for any i.

We are going to derive an upper bound for max (ﬂ) not depending on D.

Since D does not occur in (23°), it suffices to consider the case /=3. We recall
that D=D,, for some M;=L(x), where 1=i=/. The relative discriminant
Dy, divides D(Py), consequently

(24) D= DM| i NL!Q(DMJL)DEM‘:L] = d.DlL.
Finally, from (23) and (24) we get

(25) max (i) < 8] ™ Pexp {(c10/21)((dDL)¥"* (log dDy)pt-10-}

with ¢;o=(5nl%)%"",
In view of (22) the polynomial
JH@) = (x=7) ... x—EZ[x]

is Z;-equivalent to f and
F*| = (1+ max (D).
This together with (25) and (23") imply (6) and (6").
PrROOF OF COROLLARY 1.2. By Theorem 1 there is a polynomial f*Z, -equiva-
lent to f such that

|F| £ Th
where, for brevity, T, denotes the upper bound given in Theorem 1 for r_F“-l For
1=j=k—2 this implies
If*d| < K'T,,
whence

IDGP)| = [DFD)| < (k*Ty*k=3-b
and (4) follows.



164 K. Gyéry

PrOOF OF COROLLARY 1.3. By Theorem 1 there exists a polynomial f*(x)=
=x*+b,x*"14 ... +b.€Z;[x] such that f(x)=f*(x+a) for some acZ; and
(26) THE

where T, as above, denotes the expression occurring on the right side of (3). The
case a=0 being trivial, we suppose that a=0.
We have

1= lal*+2*Tyfal*2.
In case H-:T‘ T, (33) immediately follows, hence we suppose H%Z"T +» Wwhen
(27) If1=2]al"

On the other hand we have

(28) a;=%_-—%(—!a—)— — [kfi]a‘+[z::] bya'~*+...+b;.

Denote by a such a conjugate of a over Q for which |a®’|=]a] holds. By taking
the corresponding conjugates on both sides of (28) we get

(29) "v-[ ]a"’)‘ [_}] b{(a®y -1+ ...+ b
Since |a”|=1, it follows from (26), (27) and (29) that
(30)

k: l] b{» +(t:12] bP(@P) 14 ...+ bP(@W) =i+ — g®(aW)-i+1| =

a=(s)”

= oo Do+ Alaf ! & g T+ 24, fal=-0-2.

k—i+1 +

kt
T,, we get

First suppose that kr—(i—1)=0, that is i_l =1. Applying Lemma 5

: . i
of [13] to the linear polynomial T

T i i~kt i- h
e el

1

Let now kt—(i—1)<0, that is <1. Since la_lé,«‘l,"T immediately

1
i—kt
1
implies (32), hence we assume that |a|:=-A‘ k_ This yields
1
A; E’Ih—(i-l) - Al‘-T’
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whence, by (30),

ol ; o 5
! T l—kt]
(32) la| = [_k—-i+l T+ 2°4; 3
From (31) and (32) we get
1 1
(33) E = [(kTi)mla(l-kt.1)+2:Al 2 (i-h'l)]m“ (i—h'l)= T&‘
Finally we obtain
— | f**-9(a) [k+ 1]
la;| = |——7—| = A by
= "= 3 78

which was to be proved.

Proor oF COROLLARY 3.2. By (9) the discriminant Dy, (x) satisfies

(Dg(2) = 32Dy,
whence

(34) | Njo(Drin(@)| = Nijo(SHNyo(Dii) = M2|Dy|.

Let r denote the free rank of the group of units of L. If r>0, by a theorem of C.
L. SIEGEL [26] there exist independent units 7,, ..., #, in L such that

— Slog Dy \*?
og | < 3n (23] o=,

for I=1,...,r. Let U denote the multiplicative group generated by n,, ..., n,-
A well-known argument shows (see e.g. Z. I. BOREVICH and I. R. SHAFAREVICH [7]
or A. BAKER [3]) that there is a unit n€ U such that

(35) |Dgp () = n| < [M?|Dg|]'" exp {n*T§)}.
Further 5 can be written in the form n=x"¢~**-1 with #’, e€U for which
In’| < exp {rk(k—1)Tg}.
Writing =Dy, (¢7*x), we obtain from (35)

18] = [M2IDxI" exp {n*k (k—1)T}.
In view of (34) this is still true for r=0 with eé=1 and 73=0. Applying now
Theorem 3B to ¢~ o, we get an o* Z;-equivalent to ¢~'a for which

la*| < exp {(5nk®)** (| D] (log | Dg[)™)Pk - k=2 (| Dy [k-D k-2 | |og M)},

This proves Corollary 3.2.

PROOF OF THEOREM 5. By Theorem 3A « can be written in the form a=a*+a,
where a€Z; and for |«*| (7) holds. For brevity, denote by T, the upper bound given
in Theorem 3A for |a*|.
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By taking the norm of x over L we get
(af +a)... (a5 +a) = pu,

where of, ..., % denote the conjugates of «* over L. Suppose, for convenience,
that o*=oy. Writing of +a=y; for i=1,2, we obtain

(36) =iy = &F —af,

Put M=L(ay,23) and m=[M: Q]. Let D, be the absolute value of the dis-
criminant of M. Then m=nk(k—1) and we obtain D, =(dD})**~" by the same
reasoning as in (17) and (24). Further |Nyyo(u;)|=N"**-Y. Apply now the Pro-
position of Section 4 to (36) with y,=y,=@3;=1 and y;=as —o;. By virtue of
this Proposition there is a unit & in M such that

max ([ €|, [e€l, &]) < exp {c11 Dy (log 2Dy)*" =1 (D} +log (2T, N**-V))} = T,

2m

with ¢, =—— (4m)*™+?_ Since |¢~!|<7y"~*, hence we have

| = Juy| = T < exp {(5nk3)**¢+D((dD})*3 (log dD)™** -V [log ([5| N')+
+((dD%)*2(log dDy)™ypt-D G-7),
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