Generalized difference-property for functions
of several variables

By K. LAJKO (Debrecen—Godollo)
0. Introduction

Setting out from N. G. DE BRUDN’S investigations (see [2]) numerous authors
studied difference-properties (e.g. [2], [3], [4]). An algebraic difference-property,
first to be found in the paper of Z. DAROCZY—K. LAIKO—L. SzEKELYHIDI [5], is
the following:

Denote by P the set of positive elements of an ordered field and let 4 be an
additive Abelian group. Let f: P—A be an arbitrary function and 4;f: P—A
be the function defined by

¢y 4,f(x) = f(4x)—f(x) (x€P)
for all fixed A€ P. The function «: P—A is called a Jensen-function if

@ 22(BE%) = 2o a0e) (v, %EP)

holds. Denote by J(P—A) the class of Jensen-functions.
The next theorem is due to Z. DAROCZY—K. LAIKO—L. SZEKELYHIDI.

Theorem 0.1. Let f:P—~A be an arbitrary function, such that the function 4, f
defined by (1) is a Jensen-function for every fixed A€ P. Then there exists a function
a€J (P—+A) such that the function m(x)=f(x)—oa(x) (x€P) is a homomorphism,
ie.

(3) m(xyXy) = m(x)+m(xy) (X1, X,€P)

holds.
This result shows that the Jensen-property is a difference-property.
In this paper we are going to investigate a generalization of the above difference-

property.
Our notations are the following: Denote by P" the set

1 2 n

PXPxX...xP and for
A=(Agyinis A)EPS Z=(X4 s X EP® lot A% ka (g2, . A2 )
If xeP" then x;(r) will denote the vector

(Il, R ] xi_l, I, xi+1, ser gy Xﬂ).
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Let F: P"-A be an arbitrary function and A4;F: P"~A be the function
defined by i

@ 4,F(x) = F(2x)—F(x) (x, 2€P").

The function H: P"—~A is said to be a generalized Jensen-function, if

®) 2H [5; [ ”;s]] = H(x,(0)+ H(x:(5))

holds for every i=1, ...,n; x€P" and t,sc P. The class of generalized Jensen-func-
tions will be denoted by J (P"— A).

The property T is said to be a generalized difference-property if the following
holds: for any F: P"—+A, such that A,F: P"~A has the property T for every
AEP" the representation 3

() F(x) = H*(5)+‘§; mi(x) (x€P7)

is valid, where H* is a function of property T and my: P~ A are homomorphisms
of P into A (i=1,...,n).

We prove that the generalized Jensen-property is a generalized difference-pro-
perty in this general sense. Besides in the case R, ={x|x>0} we shall give the general
form of generalized Jensen-functions.

1. A generalized difference-property

The generalization of theorem 0.1. can be formulated as follows:

Theorem 1.1. Let F: P"+A be such a function that A, FEJ(P"~A) for all
AEP", then - 9

%) F(x) =°‘(*’+,§: my(x) (x€P",

where a€J (P"+~A) and m;: P+~ A (i=1, ..., n) are homomorphisms of P into A.

PROOF. Our method is induction on n, the number of variables of F.

a) If n=1, the proposition is just the theorem 0.1. which was proved in [5].

b) Let us suppose that the theorem holds for functions of n variables, then we
show that it is true for functions of n+1 variables.

We shall use the notations

(_x_s xn+l) = (‘xl.’ LR | xlll xn+l)s
Ay Pns1) = (A1y oees 2ny A1)

for elements of P"+1.
Assume that 4, ;, ) FEJ(P"*1—+A).

(i) First we demonstrate that the function defined by
(9) QO(_-'E, xll-!-l) . F(J’ 2.1',,.'.1)“‘}:‘(}', xu+ 1)3 ((:‘f! xn+1)e Pn+l)
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has the form
(10) (9(5! 'xn-i-l) =2 (0(5, l)+mn+1(xn+l)_¢(l, l)9 ((1" xu+1)€P“+1)'
Namely if feJ(P**1—A), then

25[5, ";" = B(x, 1) +B(x, 1) (xEP"; 1y, 1,€P).

Let us substitute here in order #,=2x,,,, 1,=2;
h=xatl, =1 hLh=2X.0 L=
then we obtain the equations
2B(x, X,41+1) = B(x, 2x,4 ) +B(x, 2),

2ﬁ [59 &3_4-_2-] _— ﬁ(ss xn+1+l)+ﬂ(§s l)s

2p(x, 24¥2) = (s, ) 85D

for all x€P", x,.,€P. Comparing these equations we obtain that f satisfies the
functional equation

(11) B(x, 2x,41) —2B(X, Xps1) = B(x,2)—2B(x, 1), (XEP", X,4,€P).
By 4g,1,,)FEJ(P"~A) it follows from (11) that
A(i. 1,+1)F(53 2xn+l)_2d(é.i,,+1)F(5’ xn+l) =
(12) = 4G, 2,0 F(x,2)—24,,,,pF(x, 1) =
= F(x, 244 41)— F(X, 2)—2F(X, }p+)+2F(x, 1)

is valid for all (x, X,+1), (4, A,+)EP"*L.
On the other hand from the definition of the function 4,1, F we get

(13) {AQ.AHH}F(L 2-1'.+1)_2A(5.1,..1)F(L Int1) =
= F(A%, 22 11Xy 1) = F(X, 2X,, 1) = 2F(AX, A1 1Xp+1)+2F(X, X5 11).

Equations (12) and (13) immediately imply that the function @: P**'— A4 defined
by (9) satisfies the functional equation

(14) P(AX, Ay i1 Xp41) — (X, Xp41) = @(AX, Aps)— (X, 1)
for all (x, x,,), (4, 4,+1)€P"*1. From (14) by substitution 4,,,=1, x=1 we have
(15) fP@; xn+1) = (o(i'r 1)+¢Q’ x,|+1)_()9(_l, ]) Q’€Pn! xn-l-lEP)'

Substituting (15) in (14) we easily obtain that
@(l’ A'u+lxu+1) = (P(l- A,+1)+‘PQ1 Xp41)
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for all 4,4y, x,+1€P, i.e. the function m,,,: P—~A defined by

My i1 (Xns1) = @(L, Xp51)  (Xp421€P)

is a homomorphism.
Thus (15) shows that ¢ is of form (10).
(ii) The definition of function ¢ implies that

e(4x, D—o(x,1) = 4G, F(x,2)— 24,1 F(x, 1),

ie. p(lx, 1)—o(x, 1)€J(P"—~A) for all A€ P". By our assumption b) there is a func-
tion a€J(P"+A) and there are homomorphisms m;: P—A (i=1,2,...,n),
such that -

(16) o(x, 1) =a(x)+ 2 mi(x) (xeP).
i=1
(iii) A, i, ,p FEJ(P"*!+A) implies that the function «,: P**'—~A defined by

(17) (X, Xps1) = F(X, 2%, = F(X, Xp41)  ((%, Xp4)EP™Y)

belongs to J(P"*+1—+ A).
On the other hand from (17) and (10) it follows also

(18) o (Xy Xp41) = @(X, Xp41) + F(X, Xp41) ((l‘- xn+l)€P“+1)‘
(iv) Using (18), (10) and (16) we obtain that

F(& Xos1) = (%, Xor0)—3(2)— il () —o(l, 1)

for all (x, x,.,)€P"*,
Let « be the function defined by

(X, Xp41) = 0 (X, X4 —EX)—0 (1, 1)  ((x, X,+2)EP"HY),

then a€J(P"*'-A4) and by the notation
m;(x;)= —m;(x;) we obtain that

n+41

F(x, X,+1) = a(x, X,,+1)+_Z; m;(x;) ((3, X s3)E pnu),

which corresponds to the form (8).
This completes the proof of theorem 1.1.

2. The general form of generalized Jensen-functions

The formula (7) given in the theorem 1.1. set the problem of the representation
of generalized Jensen-functions. We shall demonstrate that if P"=R" (where R,
is the set of positive real numbers) and 4=R, then there is a close connection
between the Jensen-functions of J(R"”. —R) and multiadditive functions. In this
case we find the general form of Jensen-functions by the help of multiadditive
functions.
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To prove our theorem we need the following result of [5]:
Lemma. If the function «:R,—~R belongs to J(R,—~R), then o has the form
(19) a(x) = A(x)+b (x€R,),

where the function A: R-—R satisfies the Cauchy functional equation

(20) A(x+y) = AX)+A4Y) ((x, »)ER?Y

(i.e. additive) and bER is an arbitrary constant.
Using induction on »n, the number of variables, we shall prove

Theorem 2.1. If the function «:R" —R belongs to J(R". -=R), then « has the
form
1(5) = Ag(xlv A xn)+Arx:—l(xlv \rey x,,__-,)+...+Aﬁ_1(x2, seey xn)+

n(n=1)

(2]) +A:—2(‘r1v---yxu—~2)+"'+An—82 (xa'"':xn)+---+A%(xl.‘x2.)+

nin—1)

+ .44z P (Xp-1s X))+ A (XD + ... +A45(x,) + 4o

for all x€R", where thefuncrfonsA’}‘:R‘—-R[:':l, vy s k=0, ..., [?];I:l, ...,n—l)
are additive in each variable and A,€R is an arbitrary constant.

PrROOF. a) If n=1, then the statement is true by the lemma.

b) Let us suppose that our statement holds for functions with » variables,
then we prove that it is satisfied for n+4 1 variables too.

If o belongs to J(R"**—~R), then using the Jensen-property of « in the (n+ 1)th
variable (because of our lemma) « has the form

(22) (X, Xp41) = A(X, X, 41)+b(X)

for all x€R%, x,,.,€R,, where the function A:R"% XR—R is additive in the (n+ I)th
variable and b:R% —R is an arbitrary function. Since « is a Jensen-function in
each variable, using (22) we get the equation

23) 24 [;i[fl‘;fz], x,.ﬂ] +2b [;;[:lé_rg]] = A(x,(ty), X,41)+

+ A(x(t2), Xp41)+b(x:(1)+ b(x:(12))
for all XER%, %,.1€R; 4, 5LER, and i=1,...,n.

The additivity of A4 in the (n+ 1)th variable and (23) imply that
Xn+1 [2¢Z [Ei [tl-;tz]’ 1]—2(5.'(‘1)’ l)"‘x(li(fz); 1)] =
= b(xi(t)+b(xi(r2)—2b [.-}'i ( = ;:re]]

is valid for all positive rational x,.; and i=1,...,n; x€R%; t,,,€R,. This is
possibile if and only if the coefficient of x, ., and the right hand side of this equation
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is equal to zero for all x€éR%, 1,,,€R, and i=1, ..., n, which shows that the
function b belongs to J(R" —~R).
By induction hypothesis it follows then that » has the form

B(X) = BYUX)+Bho1 (X1 s Xpot)Fore + By (Xas e X+

nin=1)

(24) B g(Xysoees Xag)FooeF Bacag  (Xgs cees X oot BlOG, X+

nin-1)

+..+Bs * (%-1, X)+B}x)+...+B(x,)+ B,

for all x€éR" , where the functions Bf: R'-~R are additive in each variable and
B,<R is an arbitrary constant. B

On the other hand b€J(R% —R) and (23) imply that the function A has the
Jensen-property in each of its first n variables, which means that for every fixed
x,+1€R, moreover for x,,,;€R A4 belongs to J(R% —R). Thus by the induction
hypothesis we have

‘Z(“_Ys xn+l) = /T:(_x$ xn+1)+11-l(xls ooy Xp—1s xu+1)+'"+
(25) +j:—l(x29 ey Xy xn+1)+"‘+‘a'f(x1$ xn+l)+°°‘+

+Xf (s xn+l)+‘zﬂ(xn+l)

for all x€R", x,.,€R where the functions A¥: R'—~R are additive in each variable
i=n, and 4,: R-R is an arbitrary function.

To complete the proof it is sufficient to show that every function A is additive
in the last variable too.

The function A is additive in the last variable, therefore from (25) we obtain
the functional equation

‘ql'l](xla vees Xps r1+:‘2)+ﬁ,‘_1(x,, cees Xpe1s f1+f2)+...+
+Aao1 (X, ooy Xy 1)+ oo+ A (5, 1)+ A+ AT (X, 1)+
+10(rl+'2) = zg(xl’ aen g Jhy)y Ir1)—}_’a’l‘|](xls “er g xn! t2)+

(26)
{ F AL (X, ey Xggs ) F A3 (Xay oo s Xy B F oo F

b A  (ny oo Xas B} T At (Xpy ions Koy f) s+ AL (%, B)
+ ALy, t) + ..+ AP (X, 1)+ AL (x,y, 1)+ Ay (1)) + A (1)

for every fixed x;€R, (i=1,...,n) and for all 1, 1,€R. Using the multiadditivity
we obtain from (26) that

Xye o X [AR(L 0+ 1) - A3, 1) - AL, 1))+
X0 e o Xy [A2 (U, ty+1)— A2 (1, 1) — A2, (1, 1]+
+ et X e o Xy [An-1(, ty+1) — Ay-1 (1, 8)—Ao-1 (1, 1)] +
+ ... +x,[42(1, t,+1)— A2, t)—-A2(, 1))+
oA+ x (A2, a4+ 1) = A2, 1) = A2 (1, 19)] = Ap(t) + Ao(t) — Ao (8 +15)
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for arbitrary positive rational numbers x,, ..., X, and for all #,, #,€R. This is possibile
if and only if the coefficients in the brachets and the right hand side of this equation
is equal to zero for all t,, t,€R. This means that the function 4,: R—R is additive
on the whole plane.

If all x}s (j=1,...,n) are rational except the ith (i=1, ..., n) one then using
a similar reasoning then before we get from (26) that

P LU R DTCRSRRS, K 1 L o SSEORN S 00 OBARER) W U % DO (g NS g UPONE) A BE
¥ s B i Ny i R s s Riiin s Al JE
Fesii b X o S Xat * Ky ¥ e -x,,[J,’.'_l(l, sk Xisia ek b~
S L | PSR, R [t 5 TRNS ARV VR~ R, R e | [
+x,[A2(1, ty+1)— A2, 1) - A2, 1))+ ... +[AL(x;, ty+2)— AL, 1) —
— Ay )1+ ... +x,[AP(1, ty+1)—A7(1, 1) —A7(1, )] = 0

for x,€R, (i=1,...,n), t;,t,€R. This implies that the functions A;: R?-R
(i=1, ..., n) are additive in the 2th variable for x;€R and by the extensions:

I‘T{(xh Z] = _‘I:(_xb t] (xf o 0); J{(O! f) =0

this follows for all x;€R too and then the functions 4;: R—R are biadditive.
Let now x,, ..., x,, be rational numbers except x; and x;, then from (26) we

obtain that the functions Ai: R*-R [i =1, ..., (;]] are additive in each variable.

Continuing similarly we obtain that the functions 4i: R*-~R, ..., 4i_;:R"~R
and finally A}: R"*'—R are additive in each variable, i.e. they are multiadditive

functions.
From (22), (24) and (25) we obtain (21) for n+1 variables.
Thus the proof is complete.

3. The investigation of generalized difference-property in the case
P=R"%, A=R

Knowing the general form of generalized Jensen-functions in the case P"=R"
and A=R, the theorem 1.1 can be formulated as follows:

Theorem 3.1. Let F: R —~R be a function, such that the function 4, F: R’ ~R

defined by (4) belongs to J(R". —R) for all AeR". . Then there exist homomorphisms
mi: Ry—~R (i=1,...,n), multiadditive functions Af:R'-R (i=1,...,n; k=
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1§ [n]; =1 ...,n-—l] and Ay€R constant, such that

l
33 5 R S B (S iy O U . L 1R
nin—1)
@) A3k s X+ F A, XDt A T (g XD

Ai(xl)+...+A:(x,.)+g"; my(x)+ Ao

for all xeR",.

Proor. The statement of this theorem immediately follows from theorems
1.1. and 2.1. ie. from the formulae (7) and (21).

In the case n=2 theorem 3.1. can be applied to determine the general solution
of “rectangle-type” functional equations (see [6]), therefore it is interesting to re-
formulate our theorem in this case:

Corollarly. Let F:R% —~R be a function, such that the function 4, ,F: R% ~R
defined by 4, ,F(x,y)= F().x uy)—F(x, y) (x, y, 4, p€R;) belongs to J(R% —-R)
for all (4, ,u)ER"* Then there exist homomorphisms m,, m,: R, —R, a biadditive
function A4: R*—R, additive functions a,, @,: R—R and a constant b€R, such that

F(x,y) = A(x, y)+a;(x)+as(y) +my(x) +my(y) +b  (x, yER,).
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