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On Riemannian manifolds endowed with
a T -parallel almost contact 4-structure

By FERNANDO ETAYO (Santander) and RADU ROSCA (Paris)

Abstract. T -parallel almost contact 4-structures on a Riemannian manifold are
studied. It is proved that such a manifold is a local Riemannian product of two totally
geodesic submanifolds, one of them being a space form. Additional results are obtained
when the manifold is endowed with a framed f -structure.

1. Introduction

In the last two decades, contact, almost contact, paracontact and al-
most cosymplectic manifolds carrying r (r > 1) Reeb vector fields ξr have
been studied by a certain number of authors, as for instance:
M. Kobayashi [11], A. Bucki [4], S. Tachibana and W. N. Yu [22],
K. Yano and M. Kon [25], V. V. Goldberg and R. Rosca [8] and some
others.

In the present paper we consider a (2m + 4) dimensional Riemannian
manifold carrying 4 structure vector fields ξr (r, s ∈ {2m+1, . . . , 2m+4})
and with a distinguished vector field T , such that the vertical connec-
tion forms define a T -parallel connection and the Reeb vector fields are
T -parallel (this structure is called a T -parallel almost contact 4-structure
and it will be defined in Definition 3.1). Then we shall prove that such
a manifold is a local Riemannian product of two totally geodesic sub-
manifolds, M = M> × M⊥, where M⊥ is a space form tangent to the
distribution generated by the Reeb vector fields, and that the vector field
T is closed torse forming (Theorem 3.3).

In section 4 we shall study conformal-type structures induced by a T -
parallel almost contact 4-structure. Finally, in section 5 we assume that
the manifold under consideration is endowed with a framed f -structure,
proving that M> is a Kählerian submanifold (Theorem 5.2).
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2. Preliminaries

Let (M, g) be a Riemannian C∞-manifold and let ∇ be the covariant
differential operator defined by the metric tensor g. We assume that M

is oriented and ∇ is the Levi-Civita connection. Let ΓTM be the set of
sections of the tangent bundle TM and [ : TM → T ∗M , X → X[, the
musical isomorphism defined by g. Next, following a standard notation,
we set: Aq(M,TM) = Hom(ΛqTM, TM) and notice that elements of
Aq(M, TM) are vector valued q-forms (q ≤ dim M). Denote by d∇ :
Aq(M, TM) → Aq+1(M, TM) the exterior covariant derivative operator
with respect to ∇ (it should be noticed that generally d∇

2
= d∇ ◦ d∇ 6= 0,

unlike d2 = d ◦ d = 0). The identity tensor field I of type (1,1) can be
considered as a vector valued 1-form I ∈ A1(M,TM) (and it is also called
the soldering form [7]).

We shall remember the following

Definition 2.1. (1) (see [10]) The operator dω = d+e(ω) acting on ΛM

is called the cohomology operator , where e(ω) means the exterior product
by the closed 1-form ω ∈ Λ1M , i.e., dωu = du + ω ∧ u for any u ∈ ΛM .
One has dω ◦ dω = 0, and if dωu = 0, u is said to be dω-closed . If ω is
exact, then u is said to be dω-exact .

(2) (see [18], [16]) Any vector field X ∈ ΓTM such that: d∇(∇X) =
∇2X = π ∧ I ∈ A2(M ; TM) for some 1-form π, is called an exterior
concurrent vector field and the 1-form π, which is called the concurrence
form, given by π = fX[, f ∈ C∞(M).

(3) (see [23], [16]) A vector field T whose covariant differential satisfies
∇T = rI + α⊗ T ; r ∈ C∞(M) where ω = T [ is a closed form, is called a
closed torse forming .

If < denotes the Ricci tensor of ∇ and X an exterior concurrent vector
field, one has <(X, Z) = −(n− 1)fg(X, Z), Z ∈ ΓTM, n = dim M.

Let C be any conformal vector field on M (i.e., the conformal version
of Killing’s equations). As is well known, C satisfies

(2.1) LCg(C, Z) = ρg(C, Z) or g(∇ZC, Z ′) + g(∇ZC, Z) = ρg(Z, Z ′)

(Z,Z ′ ∈ ΓTM) where the conformal scalar ρ is defined by ρ = 2
n (div C).

We recall the following basic formulas (see [3])
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Proposition 2.2. With the above notation, let LC , K, ∆ and < de-
note the Lie derivative with respect to C, the scalar curvature, the Lapla-
cian and the Ricci tensor field of ∇, respectively. Then:
(1) LCZ[ = ρZ[ + [C,Z][ (Orsted’s lemma).
(2) LCK = (n− 1)∆ρ−Kρ .
(3) 2LC< (Z, Z ′) = ∆ρg (Z, Z ′) − (n − 2) (Hess∇ ρ) (Z, Z ′) where

(Hess∇ ρ)(Z, Z ′) = g(Z,∇Z′(grad ρ)).

Definition 2.3 (see [19], [20], [15]). Any vector field C whose covari-
ant differential satisfies ∇C = fI + C ∧X is said to be a skew-symmetric
conformal (ab. SKC) vector field or a structure conformal vector field,
where ∧ means the wedge product of vector fields, i.e., (X ∧ Y )Z =
g(Y, Z)X − g(X, Z)Y ; X, Y, Z ∈ Γ(TM).

Remark 2.4. Let O = vect{eA;A ∈ 1, . . . , n} be an adapted local field
of orthonormal frames on M and let O∗ = covect{ωA}be the associated
coframe. With respect to O and O∗ the soldering form I and E. Cartan’s
structure equations can be written in indexless manner as

(1) I = ωA ⊗ eA ∈ A1(M, TM)
(2) ∇e = ϑ⊗ e ∈ A1(M, TM)
(3) dω = −ϑ ∧ ω
(4) dϑ = −ϑ ∧ ϑ + Θ

In the above equations ϑ (resp. Θ) are the local connection forms in the
bundle O(M) (resp. the curvature form on M).

Finally, we remember the following

Proposition 2.5. Let π ∈ Λ1M be a Pffaf form on a manifold M .
Then in order that π be of class 2s on M it is necessary and sufficient to
have (dπ)s+1 = 0, π ∧ (dπ)s = 0.

3. The main result

Let M(ξr, η
r, g) be a (2m+4)-dimensional oriented Riemannian man-

ifold carrying 4 Reeb vector fields ξr (r, s ∈ {2m + 1, . . . , 2m + 4}) with
associated structure covectors ηr, that is ηr(ξs) = δrs. Following a known
terminology we may decompose the tangent space Tp(M) at p ∈ M to
M as TpM = D>

p ⊕ D⊥
p .Then D⊥

p is a 4-dimensional distribution de-
fined by the set {ξr}, called the vertical distribution, and its orthog-
onal complement D>

p = {ξr}⊥ which is called the horizontal distribu-
tion. Consequently any vector field Z ∈ Γ(TM) may be written as
Z = (Z − ηr(Z)ξr) + ηr(Z)ξr = Z> + Z⊥ where Z> (resp. Z⊥) is the
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horizontal component of Z (resp. the vertical component of Z). We recall
that setting A; B ∈ {1, 2, . . . , 2m} the connection forms ϑA

B , ϑr
B and ϑr

s

are called the horizontal, the transversal and the vertical connection forms
respectively (see also [21]).

With the above notation, one has the following

Definition 3.1 ([17], [9]). Let M(ξr, η
r, g) be a (2m + 4)-dimensional

oriented Riemannian manifold carrying 4 Reeb vector fields ξr such that
the vertical connection forms verifies ϑr

s = 〈T , ξs∧ξr〉, where T is a certain
vertical vector field. Then, we say that vertical connection forms ϑr

s define
on D⊥ a T -parallel connection and T is called the generator of the consid-
ered (T .P )-connection. Moreover, if the Reeb vector fields are T -parallel,
i.e., ∇T ξr = 0, then the manifold M(ξr, η

r, g) is said to be endowed with
a T -parallel almost contact 4-structure (abr. T .P.A.C. 4-structure).

In the present paper we shall deal with these manifolds.

Remark 3.2. If we set T =
∑

trξr; tr ∈ C∞(M) then the vertical
connection forms are expressed by ϑr

s = tsη
r − trη

s. Since the vertical
connection forms satisfy ϑr

s(T ) = 0, then by reference to [13] we may say
that ϑr

s are relations of integral invariance for the vector field T .

Similarly one may decompose in an unique fashion the soldering form
I of M as I = I> + I⊥ where I> = ωA ⊗ eA and I⊥ = ηr ⊗ ξr mean the
line element of D> and the line element of D⊥ respectively.

We can state

Theorem 3.3. Let M(ξr, η
r, g) be a (2m+4)-dimensional Riemannian

manifold endowed with a T -parallel almost contact 4-structure and let T
be the generator vector field of this structure.

For such a manifold the structure covectors ηr(r∈{2m+1, . . . , 2m+4})
are of class 2 and cohomologically exact, i.e., d−ωηr = 0, where ω is the

dual form of the generator T which enjoys the property to be a closed torse

forming and to define a relative infinitesimal conformal transformation of

the almost contact structure of M .

Any manifold M which carries a (T .P.A.C.) 4-structure may be viewed

as the local Riemannian product M = M> ×M⊥ such that:

(i) M⊥ is a totally geodesic submanifold of M , tangent to the vertical

distribution D⊥ = {ξr} which enjoys the property to be a space form of

curvature −2a (a = const.)
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(ii) M> is a totally geodesic submanifold of M , tangent to the hori-
zontal distribution D> = {ξr}⊥ of M .

Proof. Making use of the structure equations of Remark 2.4(2) and
taking account of Remark 3.2 one derives:

(3.1) ∇ξr = trI
⊥ − ηr ⊗ T .

Hence if Z⊥1 , Z⊥2 ∈ D⊥
p are any vertical vector fields, it quickly follows from

(3.1) ∇Z⊥2
Z⊥1 ∈ D⊥

p . This, as is known, proves that D⊥
p is an autoparallel

foliation and that the leaves M⊥ of D⊥
p are totally geodesic submanifolds of

M (in our case, dim M⊥ = 4). Next making use of the structure equations
of Remark 2.4(3) one finds

(3.2) dηr = ω ∧ ηr

where ω = T [ denotes the dual form of the generator vector field T .
By reference to [7], equations (3.2) show that all the Reeb covectors

ηr are exterior recurrent and by a simple argument it follows that the
recurrence form ω is necessarly closed, i.e., dω = 0. With the help of
(3.1) and (3.2) one also derives from I⊥ = ηr ⊗ ξr that I⊥ is exterior
covariant closed, i.e., d∇(I⊥) = 0 and this is matching the fact that I⊥ is
the soldering form of the leaf M⊥. By reference to Proposition 2.5 it is
seen by (3.2) that the structure covectors ηr are of class 2.

Let now denote by ϕ = η2m+1 ∧ . . . ∧ η2m+4 the simple form which
coresponds to D⊥

p (or equivalently the volume element of M⊥). By (3.2)
one has at once dϕ = 0 and therefore since one may write D>

p ⊂ ker(ϕ) ∩
ker(dϕ) we conclude that the horizontal distribution D>

p is also involutive.
Then setting M> for the 2m leaf of D>

p , it is seen that ξr are geodesic
normal section for the immersion κ : M> → M , which is totally geodesic.
It follows from the above discussion that the manifold M under consider-
ation is the local product M = M>×M⊥, where M> and M⊥ are totally
geodesic submanifolds of M , tangent to the horizontal distribution D>

and the vertical distribution D⊥ of M respectively.
Further since the dual form ω of T is expressed by ω = trη

r then by
virtue of (3.2) one may set

(3.3) dtr = ληr =⇒ dλ− λω = 0

which shows that ω is an exact form. In consequence of this fact, equations
(3.2) may be expressed, using the notation introduced in Definition 2.1(1),
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as d−ωηr = 0, thus proving that the structure covectors of M(ξr, η
r, g) are

cohomologically exact.
Taking now the covariant differential of the generator vector field T ,

one derives on behalf of (3.1) and (3.3)

(3.4) ∇T = (λ + 2t)I⊥ − ν ⊗ T ; 2t = ‖T ‖2

which shows the significative fact that T is a closed torse forming
(def. 2.1(3)). Since this quality implies that T is a gradient vector field,
this fact is in accordance with equation (3.3). We also derive from (3.4)

(3.5) dt = λω =⇒ t + λ = a = const.

Next operating on (3.1) by the exterior covariant derivative operator d∇one
quickly derives by (3.2) and (3.4) that one has d∇(∇ξr) = ∇2ξr = 2aηr ∧
I⊥. The above equations reveal the important fact that all the vectors
{ξr} on M⊥ are exterior concurrent vector fields (see [20]). Then since the
conformal scalar 2a is constant, we conclude by reference to [16] that the
vertical submanifold M⊥ is a space form of curvature −2a.

Next by (3.2), (3.3) and (3.5) one derives succesively LT ηr =
(a + t)ηr − trω and d(LT ηr) = (2a + λ)ω ∧ ηr. In consequence of the
last equation and by reference to [14] we agree to say that the generator
vector T defines a relative infinitesimal conformal transformation of the
considered almost contact 4-structure, thus finishing the proof.

4. Conformal-type structures induced by a (T .P.A.C.) 4-structure

In the present section we consider on M⊥ the 2-form ψ of rank 2 (if
Ω ∈ Λ2M , rank r is the smallest integer such that Ωr+1 = 0), defined by
ψ = η2m+1∧η2m+2+η2m+3∧η2m+4. On behalf of (3.2) one quickly derives
by exterior differentiation of ψ that dψ = 2ω ∧ ψ ⇔ d−2ωψ = 0 (the last
equality obtained on behalf of Definition 2.1(1)). Therefore following a
known definition it is seen that ψ is a conformal symplectic form on M⊥

having ω (resp. T ) as covector of Lee (resp. vector field of Lee). In addition
in the case under discussion one may say that ψ is a d−2ω-exact form.

It should be noticed that this property is in accordance with the gen-
eral properties of T -parallel connections (see also [14]). If Y ∈ ΓTM⊥ is
any vertical vector field, then by reference to [12] we set bY = −iY ψ. Do
not confuse with the the musical isomorphism [ : ΓTM → ΓTM∗, which
is denoted by X → X[. For instance, ω = T [.
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In the case under discussion and in order to simplify we write

β = −bT = t2m+1η
2m+2 + t2m+3η

2m+4 − t2m+2η
2m+1 − t2m+4η

2m+3

and by (3.3) and (3.2) one gets dβ = 2λψ+ω∧β by which after a standard
calculation one derives LT ψ = 2(a + t)ψ − ω ∧ β. Since ω is an exact
form, then following [1] the above equation shows that T defines a weak
infinitesimal conformal transformation of ψ. Then we obtain d(LT ψ) =
8aω ∧ψ. Therefore we may also say that T defines a relative infinitesimal
conformal transformation of ψ.

Consider now the vertical vector field C = Crξr and set % = bC.
Then in order that C be an infinitesimal conformal transformation of ψ,
one finds making use of (3.2)

(4.1) dCr = Crω.

This implies d% = 2ω ∧ % ⇔ d−2ω% = 0 and setting s = g(C, T ) one may
write LT ψ = 2sψ. In the light of this problem, and making use of (3.1)
and (4.1) one derives

(4.2) ∇C = sI⊥ + C ∧ T
which reveals the important fact that C is a structure conformal vector
field having 2s = ρ as conformal scalar (see Definition 2.3). Setting α = C[

one finds by (3.4) and (4.2)

(4.3) ds = λα + sω

and on the other hand by (3.2) one has

(4.4) dα = 2ω ∧ α ⇐⇒ d−2ωα = 0.

Hence one may say that as ψ the dual form α of C is d−2ω-exact. It should
be noticed that equation (4.4) is in accordance with the general properties
of structure conformal vector fields [19] (see also [14], [15]).

By (3.3), (4.3) and (4.4) it is seen that the existence of the structure
conformal vector field C is determined by the exterior differential system
Σe whose characterisitic numbers are r = 3, s0 = 2, s1 = 1. Since r =
s0 + s1 it follows by E. Cartan’s test [5] that Σe is involutive and C is
determined by 1 arbitrary function of 2 arguments.

Next since ρ = 2s, it follows at once from (4.3), by duality: grad ρ =
2λC +ρT . But as it is known div Z = tr[∇Z], Z ∈ ΓTM , and so one gets
from (3.4) div T = 4a + 2t and C being a conformal vector field one has
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div C = 4ρ. Therefore by the general formulas ∆f = −div(grad f), f ∈
C∞M , a short calculation gives

(4.5) ∆ρ = −8aρ

which shows that ρ is an eigenfunction of ∆ and has −8a associated eigen
value. Following a known theorem, it follows that if M⊥ is compact, then
necessarily a = −µ2 (µ = const.), that is, M⊥ is an elliptic submanifold
of M .

On the other hand taking the covariant differential of grad ρ, then by
a standard calculation one infers

(4.6) ∇ grad ρ = 4aρI⊥

which reveals that grad ρ is concurrent vector field on M⊥ [6] (we recall
that concurrency is of conformal nature). Accordingly on behalf of the
definition given in [14], we may say in the case under consideration C has
the divergence conformal property . It is worth to point out that if M⊥

is an elliptic submanifold of M (i.e., a = −µ2), then following Obata’s
theorem [24], M⊥ is isometric to a sphere of radius 1

2µ.
Further since M⊥ is a space form, then we recall [16] that any vector

field on M⊥ is E.C., with the same conformal scalar 2a. Consequently, if
< denotes the Ricci tensor of ∇, one has

(4.7) <(C,Z) = −6ag(C, Z), Z ∈ ΓTM⊥.

Then by (4.5), (4.6), (4.7) and making use of Proposition 2.2(3) and car-
rying out the calculations one derives LCg(C,Z) = 4

3ρg(C,Z). Therefore
one may state that the (S.C)-vector field C defines an infinitesimal con-
formal transformation of all the functions g(C, Z) where Z ∈ ΓTM⊥. It
should be noticed that this situation is similar to that of [14]. In addition
by (3.1) and (4.2) one finds

(4.8) [C, ξr] = −ρ

2
ξr

which shows that the structure vector fields ξr admit infinitesimal trans-
formations of generator C. Next making use of Orsted’s lemma (Proposi-
tion 2.2(1)) it follows

(4.9) LCηr = ρηr.

Hence making use of a known terminology, it follows that C defines an
almost contact transformation of the structure covectors ηr.
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Finally we denote by P = ξ2m+1∧ ξ2m+2 + ξ2m+3∧ ξ2m+4 the Poisson
bivector [12] associated with the conformal symplectic form ψ. Since P
may be expressed as

P = η2m+2 ⊗ ξ2m+1 − η2m+1 ⊗ ξ2m+2

+ η2m+4 ⊗ ξ2m+3 − η2m+3 ⊗ ξ2m+4

then since the Lie derivative is additive, one gets by (4.8) and (4.9) that
LCP = 0 which shows that C defines an infinitesimal automorphism of P.

Next operating on the vector valued 1-form P by the operator d∇

one derives after two sucesive computations d∇P = ω ∧ P − 2ψ ⊗ T −
β ∧ I⊥ ∈ A2(M, TM) (β = −bT ) and d∇

2P = 4aψ ∧ I⊥. Therfore (see
Proposition 2.5) the last equality shows that P is a 2-exterior vector valued
1-form. Moreover, taking into account LT ψ = 2sψ a short calculation
gives LC(d∇

2P) = ρ
2d∇

2P that is C defines an infinitesimal conformal
transformation of d∇

2P.

Then one has the

Theorem 4.1. Let M(ξr, η
r, g) be a (2m+4)-dimensional Riemannian

manifold endowed with a (T .P.A.C.) 4-structure discussed in Section 2 and

having T as generator vector field. Let M⊥ be the space form submanifold

of M , tangent to the vertical distribution D⊥ = {ξr} of M . One has the

following properties:

(i) M⊥ is equipped with a conformal symplectic structure CSp(4,R)
defined by the form ψ ∈ Λ2M⊥ (of rank 2) and such that the covector of

Lee corresponding to CSp(4,R) is the dual form ω of T , that is, dψ = 2ω∧ψ

and T defines a relative infinitesimal conformal transformation of ψ, that

is, d(LT ψ) = 8aω ∧ ψ, (a = const.)
(ii) Any vector field C which defines an infinitesimal conformal trans-

formation of ψ is a structure conformal vector field, i.e., ∇C = g(T , C)I⊥+
C ∧ T and one has LCψ = ρψ; ρ = 2g(T , C) and LCg(C,Z) = 4

3ρg(C,Z),
Z ∈ ΓTM⊥.

(iii) The conformal scalar ρ (LCg = ρg) is an eigenfunction of ∆ and

if M⊥ is compact, then a = −µ2 and M⊥ is isometric to a sphere of radius
1
2µ.

(iv) The Poisson bivector P associated with ψ is a 2-exterior vec-

tor valued 1-form, i.e., d∇
2P = 4aψ ∧ I⊥ and C defines an infinitesimal

automorphism of P.
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5. Framed f -structures

In the present section we assume that the manifold M(ξr, η
r, g) under

consideration is endowed with a framed f -structure φ [27], that is φ is a
tensor field of type (1,1) and rank 2m which satisfies:
(1) φ3 + φ = 0
(2) φ2 = −I +

∑
ηr ⊗ ξr; φξr = 0; ηr ◦ φ = 0

(3) g(Z,Z ′) = g(φZ, φZ ′) +
∑

ηr(Z)ηr(Z ′); Z, Z ′ ∈ ΓTM and the fun-
damental 2-form Ω associated with the f -structure satisfies:

(4) Ω(Z, Z ′) = g(φZ,Z ′); Ωm ∧ ϕ 6= 0, ϕ being the volume element of
M⊥, i.e., ϕ = η2m+1 ∧ η2m+2 ∧ η2m+3 ∧ η2m+4.
Such a manifold M(φ, Ω, ξr, η

r, g) is, as known, defined as framed f-
manifold.

With respect to the cobasis O∗ = covect{ωA, ηr} the form Ω is ex-
pressed by Ω =

∑
ωa∧ωa∗ ; a ∈ {1, . . . , m}; a∗ = a+m and the horizontal

connection forms ϑA
B satisfies the known Kählerian conditions

(5.1) ϑa
b = ϑa∗

b∗ ; ϑa∗
b = ϑb∗

a .

Since on the other hand by (3.1) it is seen that the transversal connection
forms ϑr

A vanish, one gets by exterior differentiation dΩ = 0. Since Ω
is of constant rank and closed it follows that it is a presymplectic form
on M and a symplectic form on M>. We notice that in this case ker(Ω)
coincides with the vertical distribution D⊥

p of M which may be also called
characteristic distribution of Ω. In addition by condition (3) of a framed
f -structure and ϑr

A = 0 one has (∇φ)Z = 0, Z ∈ ΓTM , that is ∇ and φ
commute.

Recall now that the torsion tensor field S of an f-structure is the vector
valued 2-form defined by S = Nφ + S⊥ where Nφ(Z,Z ′) = [φZ, φZ ′] +
φ2[Z, Z ′] − φ[Z, φZ ′] − φ[φZ, Z ′] is the Nijenhuis tensor field, and S⊥ =
2

∑
dηr⊗ξr is the vertical component of S. By (3.10), (5.6) and (∇φ)Z = 0

it is easily seen that S vanishes on D>. In this case, the f -structure
(φ, ξr, η

r) is said to be horizontal-normal (or D>-normal) [2].
Consequently, following a definition of A. Bejancu [2] the framed f -

manifold M(φ, Ω, ξr, η
r, g) under consideration is a framed-CR manifold.

On the other hand, taking into account that Ω is closed, the horizontal
submanifold M> of M moves to a symplectic submanifold.

It also should be noticed that by (3.2) one may write S⊥ as S⊥ =
2ω ∧ I⊥ ⇒ d∇S⊥ = 0 that is, S⊥ is a closed vector valued 2-form. We
agree with the following



On Riemannian manifolds endowed with a T -parallel . . . 67

Definition 5.1. Let M be a framed f -manifold and let S⊥ be the verti-
cal component of its associated torsion tensor. If the covariant differential
of S⊥ is closed, i.e., d∇S⊥ = 0, we say that M is a vertical closed framed
f -manifold.

Now since one finds LT ξr = [T , ξr] = trT − (t + a)ξr then one get
at once LT S⊥ = 2λS⊥. Accordingly the Lee vector field T defines an
infinitesimal conformal transformation of S⊥.

Then we can state the following

Theorem 5.2. Let M(φ, Ω, ξr, η
r, g) be a framed f -manifold endowed

with a T -parallel almost contact 4-structure, and let S⊥ be the vertical
component of the torsion tensor field S associated with the f -structure
defined by φ.

Any such M is a framed f -CR manifold which is vertical torsion
closed, i.e., d∇S⊥ = 0, and may be viewed as the local Riemannian product
M = M> ×M⊥ such that:
(i) M> is a totally geodesic Kählerian submanifold of M , tangent

to {ξr}⊥;
(ii) M⊥ is a totally geodesic space form submanifold of M , tangent

to {ξr};
(iii) the Lee vector field T of the (T .P.A.C.) 4-structure defines an infini-

tesimal conformal transformation of S⊥.
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plectique et de contact, J.G.P. 6 (1989), 627–642.

[2] A. Bejancu, Geometry of CR-Submanifolds, D. Reidel Publ. Comp., Dordrecht,
1986.

[3] T. Branson, Conformally covariant equations in differential forms, Comm. Partial
Differential Equations 7(11) (1982), 393–431.

[4] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A.
Griffith, Exterior Differential Systems, Springer-Verlag, New York, 1991.

[5] A. Bucki, Submanifolds of almost r-paracontact manifolds, Tensor N. S. 40 (1984),
69–89.
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