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On Riemannian manifolds endowed with
a T-parallel almost contact 4-structure

By FERNANDO ETAYO (Santander) and RADU ROSCA (Paris)

Abstract. 7-parallel almost contact 4-structures on a Riemannian manifold are
studied. It is proved that such a manifold is a local Riemannian product of two totally
geodesic submanifolds, one of them being a space form. Additional results are obtained
when the manifold is endowed with a framed f-structure.

1. Introduction

In the last two decades, contact, almost contact, paracontact and al-
most cosymplectic manifolds carrying r (r > 1) Reeb vector fields &, have
been studied by a certain number of authors, as for instance:
M. KoBavasHI [11], A. Buckl [4], S. TAcHIBANA and W. N. Yu [22],
K. YANO and M. KoN [25], V. V. GOLDBERG and R. Rosca [8] and some
others.

In the present paper we consider a (2m + 4) dimensional Riemannian
manifold carrying 4 structure vector fields &, (r,s € {2m+1,...,2m+4})
and with a distinguished vector field 7, such that the vertical connec-
tion forms define a 7 -parallel connection and the Reeb vector fields are
T -parallel (this structure is called a 7-parallel almost contact 4-structure
and it will be defined in Definition 3.1). Then we shall prove that such
a manifold is a local Riemannian product of two totally geodesic sub-
manifolds, M = M T x M+, where M~ is a space form tangent to the
distribution generated by the Reeb vector fields, and that the vector field
7 is closed torse forming (Theorem 3.3).

In section 4 we shall study conformal-type structures induced by a 7 -
parallel almost contact 4-structure. Finally, in section 5 we assume that
the manifold under consideration is endowed with a framed f-structure,
proving that M is a Kihlerian submanifold (Theorem 5.2).
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2. Preliminaries

Let (M, g) be a Riemannian C'*°-manifold and let V be the covariant
differential operator defined by the metric tensor g. We assume that M
is oriented and V is the Levi-Civita connection. Let I'T'M be the set of
sections of the tangent bundle TM and b : TM — T*M, X — X’, the
musical isomorphism defined by g. Next, following a standard notation,
we set: AY(M,TM) = Hom(AYTM,TM) and notice that elements of
A9(M,TM) are vector valued g-forms (¢ < dim M). Denote by dV :
AYM, TM) — AYTH (M, TM) the exterior covariant derivative operator
with respect to V (it should be noticed that generally dV' =dv odV # 0,
unlike d*> = d o d = 0). The identity tensor field I of type (1,1) can be
considered as a vector valued 1-form I € A*(M,TM) (and it is also called
the soldering form [7]).

We shall remember the following

Definition 2.1. (1) (see [10]) The operator d¥ = d+e(w) acting on AM
is called the cohomology operator, where e(w) means the exterior product
by the closed 1-form w € A'M, i.e., d*u = du + w A u for any u € AM.
One has d¥ o d¥ = 0, and if d“u = 0, u is said to be d“-closed. If w is
exact, then u is said to be d“-ezxact.

(2) (see [18], [16]) Any vector field X € T'TM such that: d¥(VX) =
V2X = n Al € A2(M;TM) for some 1-form , is called an ezterior
concurrent vector field and the 1-form 7, which is called the concurrence
form, given by 7 = fX°, f € C>®(M).

(3) (see [23], [16]) A vector field 7 whose covariant differential satisfies
VT =rl4+a®T; re C®(M) where w =T is a closed form, is called a
closed torse forming.

If R denotes the Ricci tensor of V and X an exterior concurrent vector
field, one has R(X,Z) = —(n—1)f9(X,Z), Z € TTM, n = dim M.

Let C be any conformal vector field on M (i.e., the conformal version
of Killing’s equations). As is well known, C satisfies

(2‘1) ﬁCQ(Cﬂ Z) = pg(C, Z) or g(chv ZI) +9(VZ07 Z) = pg(Zv Z/)

(Z,Z' € I'TM) where the conformal scalar p is defined by p = 2(div C).
We recall the following basic formulas (see [3])
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Proposition 2.2. With the above notation, let Lo, K, A and R de-
note the Lie derivative with respect to C, the scalar curvature, the Lapla-
cian and the Ricci tensor field of V, respectively. Then:

(1) LcZ® = pZ° +[C, Z)’ (Orsted’s lemma).
(2) LcK =(n—1)Ap—Kp .
(3) 2LcR(Z,Z") = Apg(Z,Z') — (n — 2) (Hessv p) (Z,Z") where

(Hessv p)(Z,2") = g(Z,V z/(grad p)).

Definition 2.3 (see [19], [20], [15]). Any vector field C' whose covari-
ant differential satisfies VC = fI + C' A X is said to be a skew-symmetric
conformal (ab. SKC) vector field or a structure conformal vector field,

where A means the wedge product of vector fields, i.e., (X AY)Z =

Remark 2.4. Let O = vect{eas; A € 1,... ,n} be an adapted local field
of orthonormal frames on M and let O* = covect{w”}be the associated
coframe. With respect to O and O* the soldering form I and E. Cartan’s
structure equations can be written in indexless manner as

() I=w®eys € AL(M,TM)

(2) Ve=9®@eec AL(M, TM)

(3) dw=—-VNw

(4)dd=—-9NI0+0O
In the above equations ¢ (resp. ©) are the local connection forms in the
bundle O(M) (resp. the curvature form on M).

Finally, we remember the following

Proposition 2.5. Let 1 € A'M be a Pffaf form on a manifold M.
Then in order that m be of class 2s on M it is necessary and sufficient to
have (dm)*tt =0, © A (dm)® = 0.

3. The main result

Let M (&-,n", g) be a (2m+4)-dimensional oriented Riemannian man-
ifold carrying 4 Reeb vector fields &, (r,s € {2m + 1,...,2m + 4}) with
associated structure covectors 0", that is n"(£s) = d,s. Following a known
terminology we may decompose the tangent space T,(M) at p € M to
M as T,M = D] @& Dy .Then Dy is a 4-dimensional distribution de-
fined by the set {.}, called the wertical distribution, and its orthog-
onal complement D;— = {&.31 which is called the horizontal distribu-
tion. Consequently any vector field Z € T'(T'M) may be written as
Z =(Z-n(2)¢) +n0"(2)¢ = Z" + Z*+ where ZT (resp. Z+) is the
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horizontal component of Z (resp. the vertical component of Z). We recall
that setting A; B € {1,2,...,2m} the connection forms ¥4, ¥’ and 97
are called the horizontal, the transversal and the vertical connection forms
respectively (see also [21]).

With the above notation, one has the following

Definition 3.1 ([17], [9]). Let M (&.,n", g) be a (2m + 4)-dimensional
oriented Riemannian manifold carrying 4 Reeb vector fields &, such that
the vertical connection forms verifies 9], = (7, £, A&,), where 7 is a certain
vertical vector field. Then, we say that vertical connection forms ¥, define
on D+ a T-parallel connection and T is called the generator of the consid-
ered (7.P)-connection. Moreover, if the Reeb vector fields are 7-parallel,
ie., Vr& = 0, then the manifold M (&, n", g) is said to be endowed with
a T-parallel almost contact 4-structure (abr. 7.P.A.C. 4-structure).

In the present paper we shall deal with these manifolds.

Remark 3.2. If we set T = > t,.&; t, € C°°(M) then the vertical
connection forms are expressed by 9, = tsn" — t,n°. Since the vertical
connection forms satisfy 9% (7) = 0, then by reference to [13] we may say
that 97 are relations of integral invariance for the vector field 7.

Similarly one may decompose in an unique fashion the soldering form
Tof MasI=1I"+1I" where IT =w? ®ey and I+ = 1" ® &, mean the
line element of D' and the line element of Dt respectively.

We can state

Theorem 3.3. Let M (&,,n",g) be a (2m+4)-dimensional Riemannian
manifold endowed with a T -parallel almost contact 4-structure and let T
be the generator vector field of this structure.

For such a manifold the structure covectors n" (re{2m+1,...,2m+4})
are of class 2 and cohomologically exact, i.e., d~“n" = 0, where w is the
dual form of the generator 7 which enjoys the property to be a closed torse
forming and to define a relative infinitesimal conformal transformation of
the almost contact structure of M.

Any manifold M which carries a (T .P.A.C.) 4-structure may be viewed
as the local Riemannian product M = M T x M+ such that:

(i) M+ is a totally geodesic submanifold of M, tangent to the vertical
distribution D+ = {&.} which enjoys the property to be a space form of
curvature —2a (a = const.)
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(i) M is a totally geodesic submanifold of M, tangent to the hori-
zontal distribution DT = {&,.}+ of M.

PrOOF. Making use of the structure equations of Remark 2.4(2) and
taking account of Remark 3.2 one derives:

(3.1) Ve =t It —n"oT.

Hence if Zi-, Z5- € Df; are any vertical vector fields, it quickly follows from
(3.1) VZ;_ Zi- € DpL. This, as is known, proves that le is an autoparallel
foliation and that the leaves M~ of DpL are totally geodesic submanifolds of

M (in our case, dim M+ = 4). Next making use of the structure equations
of Remark 2.4(3) one finds

(3.2) dn" =wAn"

where w = 7” denotes the dual form of the generator vector field 7.

By reference to [7], equations (3.2) show that all the Reeb covectors
n" are exterior recurrent and by a simple argument it follows that the
recurrence form w is necessarly closed, i.e., dw = 0. With the help of
(3.1) and (3.2) one also derives from I+ = 7" ® &, that I+ is exterior
covariant closed, i.e., d¥ (I*) = 0 and this is matching the fact that I+ is
the soldering form of the leaf M. By reference to Proposition 2.5 it is
seen by (3.2) that the structure covectors n" are of class 2.

Let now denote by ¢ = 2™+ A ... An?™*4 the simple form which
coresponds to Dy~ (or equivalently the volume element of M+). By (3.2)
one has at once dp = 0 and therefore since one may write D; C ker(p) N
ker(dp) we conclude that the horizontal distribution DpT is also involutive.
Then setting M T for the 2m leaf of D; , it is seen that &, are geodesic
normal section for the immersion x : M T — M, which is totally geodesic.
It follows from the above discussion that the manifold M under consider-
ation is the local product M = M T x M+, where M T and M+~ are totally
geodesic submanifolds of M, tangent to the horizontal distribution DT
and the vertical distribution D of M respectively.

Further since the dual form w of 7 is expressed by w = t,.n" then by
virtue of (3.2) one may set

(3.3) dt, = A" = d\— Aw =0

which shows that w is an exact form. In consequence of this fact, equations
(3.2) may be expressed, using the notation introduced in Definition 2.1(1),
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as d~“n" = 0, thus proving that the structure covectors of M (§,,n", g) are
cohomologically exact.

Taking now the covariant differential of the generator vector field 7,
one derives on behalf of (3.1) and (3.3)

(3.4) VT =M +20It —veT; 2t = ||T|?

which shows the significative fact that 7 is a closed torse forming
(def. 2.1(3)). Since this quality implies that 7 is a gradient vector field,
this fact is in accordance with equation (3.3). We also derive from (3.4)

(3.5) dt = \w = t+ X\ = a = const.

Next operating on (3.1) by the exterior covariant derivative operator d" one
quickly derives by (3.2) and (3.4) that one has dV (V¢,) = V3£, = 2an™ A
I+. The above equations reveal the important fact that all the vectors
{€¢,} on M~ are exterior concurrent vector fields (see [20]). Then since the
conformal scalar 2a is constant, we conclude by reference to [16] that the
vertical submanifold M~ is a space form of curvature —2a.

Next by (3.2), (3.3) and (3.5) one derives succesively Lrn” =
(a +t)n" — tyw and d(L7n") = (2a + N)w A n". In consequence of the
last equation and by reference to [14] we agree to say that the generator
vector 7 defines a relative infinitesimal conformal transformation of the
considered almost contact 4-structure, thus finishing the proof.

4. Conformal-type structures induced by a (7.P.A.C.) 4-structure

In the present section we consider on M+ the 2-form ¢ of rank 2 (if
Q € A2M, rankr is the smallest integer such that Q"1 = 0), defined by
= 2T Ap2mE2 4 p2mdS Ap2mtd - On behalf of (3.2) one quickly derives
by exterior differentiation of ¢ that di) = 2w A1) < d=2¥¢ = 0 (the last
equality obtained on behalf of Definition 2.1(1)). Therefore following a
known definition it is seen that 1 is a conformal symplectic form on M+
having w (resp. 7') as covector of Lee (resp. vector field of Lee). In addition
in the case under discussion one may say that 1 is a d=?“-ezxact form.

It should be noticed that this property is in accordance with the gen-
eral properties of 7-parallel connections (see also [14]). If Y € TTM* is
any vertical vector field, then by reference to [12] we set °Y = —iy1). Do
not confuse with the the musical isomorphism b : I'TM — I'T'M*, which
is denoted by X — X”. For instance, w = 7.
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In the case under discussion and in order to simplify we write
b 2m+2 2m+4 2m+1 2m+3
B=="T = tom1n™™ "% + tomesn™ ™ — tompan™ T — tompan™ "

and by (3.3) and (3.2) one gets dff = 2\ +w A 3 by which after a standard
calculation one derives L79 = 2(a + t)1) — w A B. Since w is an exact
form, then following [1] the above equation shows that 7 defines a weak
infinitesimal conformal transformation of 1. Then we obtain d(Lr) =
8aw A Y. Therefore we may also say that 7 defines a relative infinitesimal
conformal transformation of .

Consider now the vertical vector field C = C7¢, and set o = bC.
Then in order that C' be an infinitesimal conformal transformation of 1,
one finds making use of (3.2)

(4.1) dC™ = C"w.

This implies do = 2w A 0 < d~?*¢ = 0 and setting s = g(C,7) one may
write L7 = 2s1p. In the light of this problem, and making use of (3.1)
and (4.1) one derives

(4.2) VC=sI*+CAT

which reveals the important fact that C is a structure conformal vector
field having 2s = p as conformal scalar (see Definition 2.3). Setting a = C”
one finds by (3.4) and (4.2)

(4.3) ds = Ao+ sw
and on the other hand by (3.2) one has
(4.4) do=2wha < d *a=0.

Hence one may say that as 1 the dual form « of C' is d~?“-exact. It should
be noticed that equation (4.4) is in accordance with the general properties
of structure conformal vector fields [19] (see also [14], [15]).

By (3.3), (4.3) and (4.4) it is seen that the existence of the structure
conformal vector field C' is determined by the exterior differential system
Y. whose characterisitic numbers are r = 3, so = 2, s1 = 1. Since r =
so + s1 it follows by E. Cartan’s test [5] that X, is involutive and C is
determined by 1 arbitrary function of 2 arguments.

Next since p = 2s, it follows at once from (4.3), by duality: grad p =
2AC'+ pT. But as it is known div Z = tr[VZ], Z € I'TM, and so one gets
from (3.4) div7 = 4a + 2t and C being a conformal vector field one has
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divC' = 4p. Therefore by the general formulas Af = —div(grad f), f €
C*° M, a short calculation gives

(4.5) Ap = —8ap

which shows that p is an eigenfunction of A and has —8a associated eigen
value. Following a known theorem, it follows that if A/~ is compact, then
necessarily @ = —p? (u = const.), that is, M=+ is an elliptic submanifold
of M.

On the other hand taking the covariant differential of grad p, then by
a standard calculation one infers

(4.6) V grad p = dapl*

which reveals that grad p is concurrent vector field on M~ [6] (we recall
that concurrency is of conformal nature). Accordingly on behalf of the
definition given in [14], we may say in the case under consideration C' has
the divergence conformal property. It is worth to point out that if M~
is an elliptic submanifold of M (i.e., a = —u?), then following Obata’s
theorem [24], M+ is isometric to a sphere of radius 3.

Further since M= is a space form, then we recall [16] that any vector
field on M+ is E.C., with the same conformal scalar 2a. Consequently, if
R denotes the Ricci tensor of V, one has

(4.7) R(C,Z) = —6ag(C,Z), Z e TTM™*.

Then by (4.5), (4.6), (4.7) and making use of Proposition 2.2(3) and car-
rying out the calculations one derives Lcg(C, Z) = 4pg(C, Z). Therefore
one may state that the (S.C)-vector field C' defines an infinitesimal con-
formal transformation of all the functions g(C, Z) where Z € I'TM=*. Tt
should be noticed that this situation is similar to that of [14]. In addition
by (3.1) and (4.2) one finds

P
(43) €61 = -,

which shows that the structure vector fields &,. admit infinitesimal trans-
formations of generator C'. Next making use of Orsted’s lemma (Proposi-
tion 2.2(1)) it follows

(4.9) Len™ =pn'.

Hence making use of a known terminology, it follows that C' defines an
almost contact transformation of the structure covectors n".
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Finally we denote by P = &211 A2m+2 +82m13 Aamya the Poisson
bivector [12] associated with the conformal symplectic form . Since P
may be expressed as

P=n0"""® i1 — 7" ® Eopgn

+ 772m+4 ® €2m+3 - 772m+3 & £2m+4

then since the Lie derivative is additive, one gets by (4.8) and (4.9) that
LcP = 0 which shows that C defines an infinitesimal automorphism of P.

Next operating on the vector valued 1-form P by the operator dv
one derives after two sucesive computations d¥VP = w AP — 2 @ T —
BAIL € A2(M,TM) (8 = —*7) and dV*P = dap A I+, Therfore (see
Proposition 2.5) the last equality shows that P is a 2-exterior vector valued
1-form. Moreover, taking into account L7 = 2sy a short calculation
gives Lo(dV'P) = gdvzp that is C' defines an infinitesimal conformal

transformation of dvzp.
Then one has the

Theorem 4.1. Let M (&,,n", g) be a (2m+4)-dimensional Riemannian
manifold endowed with a (7 .P.A.C.) 4-structure discussed in Section 2 and
having T as generator vector field. Let M+ be the space form submanifold
of M, tangent to the vertical distribution D+ = {£,} of M. One has the
following properties:

(i) M+ is equipped with a conformal symplectic structure CSp(4,R.)
defined by the form ¢ € A2M~ (of rank 2) and such that the covector of
Lee corresponding to CSp(4,R)) is the dual form w of T, that is, di) = 2wAY
and T defines a relative infinitesimal conformal transformation of v, that
is, d(L1v) = 8aw A ), (a = const.)

(ii) Any vector field C which defines an infinitesimal conformal trans-
formation of v is a structure conformal vector field, i.e., VC = g(T,C)I*++
C AT and one has Lo = py; p=2¢9(T,C) and Log(C,Z) = %pg(C, Z),
ZeTTM*.

(iii) The conformal scalar p (Lcg = pg) is an eigenfunction of A and
if M+ is compact, then a = —u? and M~ is isometric to a sphere of radius
2H-

(iv) The Poisson bivector P associated with 1 is a 2-exterior vec-
tor valued 1-form, i.e., dV'Pp = dap A I+ and C defines an infinitesimal
automorphism of P.
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5. Framed f-structures

In the present section we assume that the manifold M (&, 7", g) under
consideration is endowed with a framed f-structure ¢ [27], that is ¢ is a
tensor field of type (1,1) and rank 2m which satisfies:

(1) ¢*+¢=0

(2) ¢* =T+ 0" ®@&; ¢ =0; n" 0 =0

(3) 9(Z,2") = g(¢Z,9Z") + > . n"(Z)n"(Z2'); Z,Z' € T'TM and the fun-
damental 2-form §2 associated with the f-structure satisfies:

(4) UZ,Z") = g(¢Z,Z"); Q™ A ¢ # 0, ¢ being the volume element of

ML, i.e., 0= n2m+1 A ,,72m+2 A 7727n—i—3 A n2m+4.

Such a manifold M (¢,Q,&.,n", g) is, as known, defined as framed f-
manifold.

With respect to the cobasis O* = covect{w?,n"} the form  is ex-
pressed by Q = S w®Aw® ; a € {1,... ,m}; a* = a+m and the horizontal
connection forms 19% satisfies the known Kéhlerian conditions

(5.1) Ve = 9% 98 =Y.

Since on the other hand by (3.1) it is seen that the transversal connection
forms 9" vanish, one gets by exterior differentiation d2 = 0. Since (2
is of constant rank and closed it follows that it is a presymplectic form
on M and a symplectic form on M. We notice that in this case ker(f2)
coincides with the vertical distribution DpL of M which may be also called
characteristic distribution of Q. In addition by condition (3) of a framed
f-structure and ¥y = 0 one has (V¢)Z =0, Z € I'T'M, that is V and ¢
commute.

Recall now that the torsion tensor field S of an f-structure is the vector
valued 2-form defined by S = N, + S+ where N4(Z,2") = [¢pZ,9Z'] +
#?Z,2') — $|Z,9Z'] — ¢[¢pZ, Z"] is the Nijenhuis tensor field, and S+ =
2> dn"®&, is the vertical component of S. By (3.10), (5.6) and (V¢)Z =0
it is easily seen that S vanishes on DT. In this case, the f-structure
(¢,&.,m") is said to be horizontal-normal (or DT-normal) [2].

Consequently, following a definition of A. BEJANCU [2] the framed f-
manifold M (¢, Q,&,.,nm",g) under consideration is a framed-CR manifold.
On the other hand, taking into account that €2 is closed, the horizontal
submanifold M T of M moves to a symplectic submanifold.

It also should be noticed that by (3.2) one may write S+ as S+ =
2w A It = dVS+t = 0 that is, ST is a closed vector valued 2-form. We
agree with the following
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Definition 5.1. Let M be a framed f-manifold and let S+ be the verti-
cal component of its associated torsion tensor. If the covariant differential
of S* is closed, i.e., dVS+ = 0, we say that M is a vertical closed framed
f-manifold.

Now since one finds L7, = [7,§,] = t,7 — (t + a)&, then one get
at once L7S+ = 2\S+. Accordingly the Lee vector field 7 defines an
infinitesimal conformal transformation of S+.

Then we can state the following

Theorem 5.2. Let M($,Q,&,.,m",g) be a framed f-manifold endowed
with a T -parallel almost contact 4-structure, and let S+ be the vertical
component of the torsion tensor field S associated with the f-structure
defined by ¢.

Any such M is a framed f-CR manifold which is vertical torsion
closed, i.e., d¥ S+ = 0, and may be viewed as the local Riemannian product
M = MT x M~ such that:

(i) M" is a totally geodesic Kihlerian submanifold of M, tangent

to {fr}J—;
(ii) M+ is a totally geodesic space form submanifold of M, tangent

to {&};
(iii) the Lee vector field T of the (7 .P.A.C.) 4-structure defines an infini-

tesimal conformal transformation of S+.
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