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This paper is a continuation of [19], [20]. References are quoted there.

As in ring theory one may ask the question when two categories ,% and %
for monoids A and B are equivalent. Now in ring theory we know from the additivity
of the equivalences F: ¢3¢ and ¥: ;¢ - ,% that the natural bijections

Homy(#(M), N) = Hom, (M, ¥(N)) and Hom,(%(N), M) = Homg(N, F(M))

are isomorphisms of abelian groups. So in the general case we only want to con-
sider equivalences such that there are isomorphisms [# (M), N]=,[M, (N)]
and L[%(N), M]=2g[N, #(M)). In view of theorem 4.3. this is equivalent to study-
ing equivalences such that % and % are %-functors. The last condition can be studied
even in monoidal, non-closed categories.

We call € and € €-equivalent if there are inverse equivalences Z:,€ ;%
and %:;€—~,€¢ such that # and ¥ are ¥-functors.

Without loss of generality we shall only consider equivalences # and ¥ to-
gether with isomorphisms @: F%=Id and ¥: ¥#=Id such that FY¥Y=¢%F and
Y4=%®. Then @ and ¥ and their inverses are already adjointness morphisms.

5.1. Theorem. Let 4 be an arbitrary monoidal category. Let F: ,€—~ ;¢ and
G: g€~ € be inverse €-equivalences. Then there are objects P€ €5 and Q€ g%,
such that

a) there are natural isomorphisms

F(M) = Q@M == P, M] in L%,
G(N) = PRgN = g[Q, M] in g%,

and P B-coflat and Q A-coflat.
b) there are isomorphisms of A— A-resp. B— B-biobjects

A=PRgQ and B=QQ,P
such that the diagrams

PR(OQ®P) = (PRQ)®P — AQP
' 4
PQRB 2
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and
Q®(;"®Q) = (Q®P)RQ — B?Q

0®A - Q
commute,
c) there are isomorphisms
B[Q! B] ~P in A(gﬂ'!
A[P’ A] = Q in Bgzla
d) there are isomorphisms
0. 01= A4 in ,€, andasmonoids,
AP, Pl= B in g€ and as monoids.

PrOOF. By the symmetry of the situation we only have to prove one half of
the assertions.

There is an isomorphism F(M)=Q®,M natural in M by Theorem 4.2
since # is a ¥-functor and clearly preserves difference cokernels as an equivalence.
By the same theorem we have %(N)=:4[Q, N] natural in N, since % is adjoint

to #. This proves a).
We have an isomorphism A=%%(A)=PRz(0®,A4)=P®,;0 in ,€. Further-
more we have a commutative diagram

ARA = PRp(QR4(A®A)) = PRRQORA)
{ 4 .
A = PRp(0R,44) =] P®gQ

hence A=P®z;Q as A— A-biobjects.

The adjunction morphism Y: %% =Id induces the evaluation morphism
V' PRguP, Ml=M with ¥ (pRf)=(p)f. By definition of the isomorphism
A=P®z;Q we get a commutative diagram

Pgﬁ(quM) = (P@BO)®AM =Ae, M

o -

Y

Hence if the isomorphism P®zQ=A4 is described by p®zq—pg and the
morphism Q®, M~ [P, M] is given by
q@4m — ¢(q@,4m), weget (pg)m = (p)@(g@,m).

Now if M€ /€ then we get {p) ¢ (¢ ® 4mb)=(pq) (mb)=((pq)m)b=({p) ¢ (q@,m))b=
=(p)(p(g®,m)b), hence Q®, M and ,[P, M] are isomorphic as B— B-biobjects.
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In particular we get [P, A]=Q as B— A-biobjects and [P, P]=Q®,P=B as
B— B-biobjects.
To prove the monoid isomorphisms we first observe that

PRQOQ®P) = (PRQ)®P — AQP and

} .
P®B P
0R@(PRQ) = (Q®P)®Q — BRQ
} !
o4 o

commute. This follows from F=Q®,, ¥=P®z; and from the fact that
OF . FEGF +F and FY:FGF ~F resp. 4. $F% -9 and Y9.9F%6 %
are equal. So we get

Pe(@’@p)e(@"@p") = (a)P'q)p" = p(4'P) (@ P").
Since the isomorphism ,[P, P]=B is given by
AP, P —Q®,P=>B
or ¢(¢'®p")—q’p’, the composition ¢(¢’'®Rp")¢(¢”"®p”) is mapped to the product

@p)q"p"). If ¢ (¢®p’) is the identity then p(q'p’)=p for all p. But [P, P]+B
is an isomorphism hence ¢'p'=1€B.

5.2. Corollary: The morphisms
P(X)X 4P, AI(Y) 3 (p, f) — (p)f€A(X®Y)
alP, A(X)XP(Y) 3 (f, p) = fpE P, PI(X®Y)

with (p")(fp):=((p")f)p induce isomorphisms
PRs P, Al=A and P, A]®,P = ,P,P).

and

The analogous assertions hold for Q and B.

PrOOF. The first isomorphism, the evaluation morphism, was discussed in
the proof of 5.1. The second isomorphism is just given by

AP, A1® 4P 222+ 0@, P —2— [P, P].

We have seen that each ¥-equivalence is induced by some object P€ %, with
the properties of Corollary 5.2. The converse will proved after a more detailed
study of the properties exhibited in Corollary 5.2.

An object Pe % will be called finite, if 4P, A] and B:= [P, P] exist, if P is
B-coflat and ,[P, A] is A-coflat and if the morphism ,[P, A]®,P —~ P, P] induced
by [P, AJ(X)X P(Y)3(f, p)—fp€ [P, PIX®Y) with (p)fp=({p>f)p is an
isomorphism. P will be called faithfully projective if it is finite and if the morphism
P®g 4[P, A] A induced by the evaluation is also an isomorphism.
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. 5.3. Theorem. Let A, B be monoids in €, Pc ,€y B-coflat and Q€ g€, A-coflat.
Given morphisms f: PRy Q-+ A in ;€ ,and g: Q®,P— B in g€y such that the diagrams

PRp(Q@4P) = (PRpQ)R,P A®, P
Pogg J
P@yB P
0R,4(PR50Q) = (0@, P)®50 B®y0
02, f
t
Q@44 o

commute. Assume that there is p,®pqo€ PQgQ(I) such that pyqo:=f(pe®@sqs)=
=1€A(I). Then f is an isomorphism. Assume that in addition there is
Q1 ®ap1€QR@P(I) such that ¢,p,:=g(q;®@,p)=1€B(I). Then P®Rg: g€—~,€
and Q®4: (€—~g€ are inverse €-equivalences. In particular P€ (€ and Q¢ g€ are
Jaithfully projective.

Proor. Define f:A—-P®;0 by f'(@)=ap,®sq,. Then f[ff'(a)=ap,q,=a
and [’ f(p@zq) = (Pg)Po @50 = P(9P0) @90 = P@B(qP0) 9o = PB4 (Poq) = P@s4.
Hence f is an isomorphism.

Furthermore the functors P®;0®,=A®, and Q®,PRy=B®y are both
isomorphic to the identity-functors on ,% resp. z;€, hence they are inverse equiv-
alences. Furthermore P®,; and Q®, are ¥-functors by Theorem 4.2.

5.4. Theorem. Let P¢c,€ be faithfully projective. Then [P, —]:, €~ ,p,p€
exists and is a €-equivalence.

PrOOF. By definition [P, A] and [P, Pl=B exist. Furthermore P¢, €5,
Q:= 4P, A]€g€¢, and the hypotheses of Theorem 5.3. are satisfied by the very
definition of Q®,P—-B and P®z;Q0—+A. So Q®,: €€ is a €-equivalence.
By Theorem 5.1. we get Q®, =[P, —]

Let us now apply our theorems to the case where the tensor-product in € is
the (direct) product (example ¢) of § 1). Furthermore assume that each canonical
epimorphism MXN--MX N induces a surjective map MXN(I)—~MX N(I).
This is for example the case if / is projective in the category . We say that M XN -
—+MX 4N is rationally surjective. Assume that ,4 and % are ¥-equivalent by
PRg—: g€~ ,€ and Q®,: ,€—z6. Then we have surjective maps f:P(I)X
XQUN=PXQU)~A(I) and g:Q(I)XP(I)=QXP(I)~B(I) such that (pq)p’'=
=p(qp’) and (gp)q'=q(pq’) if f(p,q)=pq and g(q,p)=qp. Let p,eP(),
¢;€Q(I), i=0,1 be chosen such that p,q,=1€A(), q,p,=1€B(I).

Let us now assume that each element in A (/) which has a left inverse has also
a right inverse. We wish to show A=B as monoids. First we show p,q,=1€A4.
By definition we have (p, 1) (P190) =Po (419190 =P 9o =1 € A(I), hence (py40) (Pyq1) = 1.
Furthermore we have p,q,p,=p,. This implies p,q,=1p,¢,=(p19oPoq) P10 =
=P190(Po01P1) 1 =P190P0q1 =1 € A(I). Now define morphisms P(X)3p—pq,€A(X)
and A(X)>a~»ap,€P. They are obviously mutually inverse morphisms in ,%.
Hence Bz< [P, P]= A, A]=A.

As a special case we get
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5.5. Corollary: In the category of sets & with the product as monoidal category
let A be a group or a commutative monoid or finite. Then & and 3& are equivalent
iff A=B.

PrOOF. In & the morphism-sets form an inner hom-functor, so by Theorem
4.3. each equivalence ¥ =,% is an ¥-equivalence. Furthermore {0} is projective
in & If A is a group or commutative or finite then each element which has a left
inverse in A (7) has also a right inverse. So all conditions of the previous discussion
are satisfied. Hence A=B. The converse is trivial.

The central part of the Morita Theorems

For this section we will always assume that % is a symmetric monoidal category.
Let us consider ¥-functors %, ¥ :,¢—,€¢ such that there are P, Q€,%, with
%-isomorphisms #=PQ,, ¥V =0Q,.

Define a new %-functor #®Y for Y€€ by UQYM):=UMRY)=
=P®,(M®Y). Because of the symmetry of ¥ we have Q@Y (M)=(PRY)Q, M
hence #®Y indeed is a %-functor.

Define [%, ¥ (Y):=%¢-Mor (%4®Y,¥") as the set of %¥-morphisms from
URY to ¥ For h: Z-Y in € define [%, ¥V )(h): (%, VY)~[%, V](Z) by
(%, V() (9)(M):=(U(M@Z) 2 Y (M@Y) 22w ¥ (M)). Then [#,¥] is
a contravariant functor from ¢ to the category of sets.

6.1. Theorem. There is a natural isomorphism of functors from € to the category
of sets:
[%, V1(Y) = p€4(PRY, Q).

If slP, Ql, exists then [U,V](Y)=y[P, Ql4(Y).
PROOF. Let f€ ;€ ,(P®Y, Q). Then define @€[#, ¥'](Y) by

f@® M

~ Q@M = ¥ (M)).

e(M) ;= (#U(MRY) = (PRY),M
For g€ (M, N) we get a commutative diagram

fe M
UAMRY) = (PRY)®,M 22 Q@M = ¥(M)

|w@r) (POY)® 49 Q8.0 ¥(@)
¥
SN
A(N®Y) =~ (PRY)®,N — Q@ N = ¥V (N)

hence ¢ is a natural transformation from #®Y to ¥, Furthermore the following
diagram commutes:

UHeX)oY)= (PoV)s,ex) T4M®X) o max) = itax)

l i I i
Uhoviex = (PovIa,m ox 14X g vax = g/imex
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Hence ¢ is a ¥-morphism. This defines a map
Z:g64(PRY, Q) ~ [, V](Y).
Conversely let o@€[#,¥](Y) and define [f€z€,(PRY,Q) by f[fi=

(PRY=PR,ARY=U(AQY)2L. ¥'(4)=Q®,A=Q). Clearly fcz€(PRY, Q).
To show that f€,%4,(P®Y, Q) consider the following commutative diagram

Ps,(ABY) 8 A2 (PoY) o, A)0AS Ulhol)aA LAIBA 41) 0 4% (Ga oA
Il I I w RN
(P0Y)8A=(PeY)e, (AwA)= U Aeley) LA 4/ Thon= Qs (0n)= el

2 (PeY)e 8, U(/LA@Y) 'V(/uA) ), /s | Vg

Por = (Pavie A = UMey)—TA) o via) = QoA Q

where the morphism from (P® Y)® A4 to Q® A along the upper side of the diagram
is just f® A and the morphism from P®Y to Q along the lower side is /. Hence
f is a right A-morphism. So we have a map

IT: [, ¥V)(Y) - p€4(PRY, Q).

Now
IE(f) = (PRY = U(ARY) —LL . y(4) = Q) =
an
S(@)(M) = (UMBY) = (PRY) @M —"2s 0@, M = ¥(M)) =

ep(d)a M

= (UMRY) = UARY)O M V(A @M = ¥ (M)) = p(M)

since ¢ is a ¥-morphism. Hence we have [%, ¥'|(Y)=,€,(P®Y, Q).

It remains to show that this isomorphism is a natural transformation. Let
h:Z—Y bein €. Then

s (PRY, Q) ——— [4, ¥](Y)

g€ 4(P@h, Q) [, ¥1(h)

s6A(PRZ, Q) —= (@, ¥)(Z)
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commutes since for f€,€,(P®Y, Q) we have

U(M&Z) % (Pe Z)8,/

UMHe h) (Po h)o,M f(Pe h)g, M

UMey) = (Pev)ar — 27 ~ QoM =)

commutative and thus

([, ¥ 1(h)oZ(Y))(f ) (M) =

w(M®h) fo.M 0@ M = V(M) =

= (A(MBRZ) UMRY) = (PRY)@, M

(f(PRR)®, M

= (U(MRZ) = (PRZ)®,M Q@M = ¥ (M)) =
= (2(Z2)opb4(P@h, Q))(f)(M).

For this theorem we have two applications. Before we discuss them, we have
to introduce the notion of the center of a monoid.

It is clear that ,%(A, A)=A(I) as monoids in the category of sets. The iso-
morphism is given by

164, A)3f — f(1) = fme A(I)
A(I)3a — (A(X)3b — bac A(X))€ (6(A, A).

Now those elements a¢A(/) which commute with all b€ 4(X) for all X induce
in ,%(A, A) precisely the A — A-morphisms ,% ,(A4, A), which then is a commutative
monoid. So a possible definition of the center of A could be ,%,(4, A). But this
is only a set, not an object in ¥. A possible generalization to an object in € is
4lA, A], if this exists. If it does not exist we know at least the functor represented
by this object. So we define the center of A as a functor from ¥ to &, the category
of sets, by Cent (4)(X):=,€,(ARX, A). If ,[A, A], exists we have Cent (4)(X)==
= 4[4, A],(X). g

As in § 3 Cent (4) can only be defined in a symmetric monoidal category in
contrast to ,% (A4, A). In § 2 we showed that ¥=% and ¥=%; hence €(I,I)=
=,%,(1,I) is a commutative monoid [I18, Theorem 1] for (possibly nonsymmetric)
monoidal categories.

Let A be a monoid in a symmetric monoidal category ¢. Let ,/d: €~ %
denote the identity functor. Then ,/d is clearly a ¥-functor and ,ld=A®, as
%-functors.
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6.2. Theorem. Cent (A4)=[,Md, ,Id].

PROOF. Cent (4)(X)=,% (AR X, A)=[,1d, Jd](X).

The isomorphism of Theorem 6.2. is only an isomorphism of objects in %.
But there is an additional structure, a multiplication on these functors. If they
were representable the representing objects in ¥ would be monoids. The multi-
plicative structure on L[4, A], as it has been studied in §3 is reflected in
4% (AR X, A) by the commutative diagram

AlA, AJf(X) X 4[4, A1((Y) — 4[4, A]4(X®Y)
AC(ARX, A)LEA@A(A ®RY, A) - A%’,‘(EQJX@Y, A)
where the lower map is given by
(f, &) — (A XQY L2L . 4@Y 2 4).
The unit is described by
IX)3f—~ (AQX —22L . AQI > A€, 8,(AB®X, A).

[41d, 4Id] carries a multiplaciticve structure via

[ad, J1d) (X)X [41d, JJd)(Y) —~ [41d, 4Id}(X®Y)

by T(p,¥) = (MR XRY 22X ,1dQY 2~ ,Id)
and there is a unit
IX)3f — X 2220, 1d@ 1=~ Jd)c[1d, JdI(X).

Using the isomorphism of Theorem 6.1. it is easy to see that they are compatible
with the multiplication and the unit map. Hence the isomorphism of Theorem 6.2.
is a ,,monoid isomorphism”.

6.3. Corollary: Let ,€ and z€ be €-equivalent. Then Cent (4)==Cent (B) as
Junctors from € to . If both functors are representable then the two representing
objects are isomorphic as commutative monoids in €:

A[A! A]A = B[B! B]B

ProoOF. We show [ Jd, ,Id]=[zld, gld]. Let F: ;6 —~,% the given ¥-equivalence.
First we show
or

€-Mor (,Id®Y, Jd)=%-Mor (FQ@Y, F).
Let ¢:,Jd®Y—~,d be a natural transformation. Define Fogp: FRQY-~F by
Fop(M): FIMQRY)~F (M) as Foop(M)=F(p(M)). Since F is an equivalence
it is clear that ¢ —%o¢ is a bijection between the sets of natural transformations.
Now we show that ¢ is a €-morphism iff Fo¢ is a €-morphism. ¢ is a €-morphism
iff the diagrams
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MeXoY _L(MOX) _ pmex

N Il

commute. Fog is a ¥-morphism iff the outer diagrams of

fiMaxey) JoLMOX) _  armex)
N I

F(Mey)ox) —FLMOX) _  ¢yex)
I o I

FMeY)ox L LMOX _ ¥ mex

commute where the lower part commutes in any case since # is a -functor. But
the upper part commutes iff the previous diagram commutes. Hence

C—Mor (LJd®Y, dd) = €—Mor (FRY,F).
Now we show [gld, gld](Y)=[#, F1(Y) or
€ —Mor (gld®Y, gld) = €—Mor (FRY,F).
It is clear that the correspondence between ¢: zld®@ Y—gld and oFo: FRY+F

with
@ (F(M))

(QoF)(M) = (F(MRY) = F(M)®Y F(M))

induces an isomorphism between the sets of natural transformation, since # is
an equivalence. Furthermore ¢ is a %-morphism iff the diagrams

NoXoy —LNeX) _  pex

I Il
Nevex —LMNeX_ NeX
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commute. On the other hand @o# is a €¥-morphism iff the outer diagrams

eoxey) Lo EMEX) _ £imgx)

I I
e oy LEMX) L §(pex)
R IN
?(M)I@Y@X PEMeX _ £(MeX

z I
?(M;Y)@X Lo (MeX o GF(Mox

commute. The first and third part commute by definition. In the middle part take
into account that &% is a ¥-functor. Then it commutes iff the previous diagram
for ¢ commutes. Hence [z/d, gld)(Y)=[#, F1(Y)=(,Md, Jd](Y).

The reader can easily verify that these isomorphisms are natural isomorphisms
in Y. Furthermore they preserve the , multiplication” given by composition of
morphisms just before Corollary 6.3. They also preserve the ,,unit”. Hence

EAd : alA, Al4 = §[B, Bl
as monoids (if they exist) or
Cent (A4) == Cent(B)

with the multiplicative structure.

6.4. Corollary: Let U: ,€—~% be the underlying functor. Then (U, U)(Y)=
= A°°(Y) natural in YE€ and compatible with the multiplication on both sides.

ProOF. By Theorem 6.1. and the fact #=A®, we have [%,%](Y)=
=€,(ARY, A)=A°®(Y) as left multiplications and these isomorphisms are
natural in ¥ and compatible with the multiplication.

So we have seen that just from the knowledge of the underlying functor %
we may regain the monoid A up to an isomorphism.

{ Received November 20, 1975.)
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