On characterizations of certain classes of semigroups

By S. LAJOS and G. SZÁSZ (Budapest)

Several important classes of semigroups or associative rings have been characterized by ideal-theoretical relations (see [2], [3], [4], [5]). These characterizations are given by equalities. In this paper three important classes of semigroups will be characterized by ideal-theoretical inequalities. These classes consist of regular and/or intraregular semigroups.

For the notions and notations used in this paper we refer to A. H. CLIFFORD and G. B. PRESTON [1].

Theorem 1. For a semigroup S the following conditions are pairwise equivalent: (A) S is regular.

- (B) $B \cap R \subseteq RB$ for every bi-ideal B and every right ideal R of S.
- (C) $B(a) \cap R(b) \subseteq R(b)B(a)$ for every couple a, b of elements in S.
- (2) $B(a) \cap R(a) \subseteq R(a)B(a)$ for every element a of S.

PROOF. (A) implies (B). Let S be a regular semigroup. Then any bi-ideal B of S can be written in the form

$$(1) B = L' \cap R' = R'L',$$

where L' is a left ideal, R' is a right ideal of S (cf. [5], Theorem 29). Since one-sided ideals of S are evidently globally idempotent, we have (by making use of the Kovács—Iséki criterion [1], p. 34)

$$(2) B \cap R = L' \cap R' \cap R \subseteq L' \cap RR' = RR'L' = RB$$

for every bi-ideal B and every right ideal R of S.

The implications $(\mathcal{B}) \Rightarrow (\mathcal{C}) \Rightarrow (\mathcal{D})$ are trivial.

(2) implies (2). Let S be a semigroup with property (2). Then (2) implies

$$(3) L(a) \cap R(a) \subseteq R(a)L(a)$$

for any element a of S. But $R(a)L(a) \subseteq L(a) \cap R(a)$ also holds, thus we get

$$(4) L(a) \cap R(a) = R(a)L(a)$$

for every element a of S. This means (see [3]) that every element a of S is regular.

REMARK 1. It is easy to see that Theorem 1 remains true with quasi-ideal instead of bi-ideal.

Theorem 2. For a semigroup S the following conditions are equivalent:

 (\mathcal{A}) S is intraregular.

- (B) $L \cap R \subseteq LR$ for every left ideal L and every right ideal R of S.
- (C) $L(a) \cap R(b) \subseteq L(a)R(b)$ for every couple a, b of elements in S.
- (2) $L(a) \cap R(a) \subseteq L(a)R(a)$ for every element a of S.

PROOF. (A) implies (B). Suppose that S is an intraregular semigroup, L is a left ideal, R is a right ideal of S, and $a \in L \cap R$. Then the product LR is a two-sided ideal of S, and $a^2 \in LR$ implies $a \in LR$ because the ideals of S are semiprime (cf. [1], p. 121). Thus (A) implies (B) indeed.

Evidently $(\mathcal{B}) \Rightarrow (\mathcal{C}) \Rightarrow (\mathcal{D})$.

 (\mathcal{D}) implies (\mathcal{A}) . Let S be a semigroup with property (\mathcal{D}) . Then we have

(5)
$$a \in L(a) \cap R(a) \subseteq L(a)R(a) \subseteq S^1a^2S^1$$

for every element a of S. Hence it follows easily that S is intraregular.

For an earlier ideal-theoretic characterization of intraregular semigroups, see G. Szász [7].

Theorem 3. For a semigroup S the following conditions are equivalent:

(A) S is regular and intraregular.

(B) $A \cap B \subseteq AB$ for every couple A, B of bi-ideals of S.

(%) $B \cap Q \subseteq BQ$ for every bi-ideal B and every quasi-ideal Q of S.

(2) $P \cap Q \subseteq PQ$ for every couple P, Q of quasi-ideals of S.

(E) $L \cap R \subseteq LR \cap RL$ for every left ideal L and every right ideal R of S.

 (\mathcal{F}) $L(a) \cap R(b) \subseteq L(a)R(b) \cap R(b)L(a)$ for every couple a, b of elements in S.

(G) $L(a) \cap R(a) \subseteq L(a) R(a) \cap R(a) L(a)$ for every element a of S.

PROOF. (A) implies (B). Let S be a semigroup which is both regular and intraregular. Then the bi-ideals of S are globally idempotent (see [5], Theorem 39). Hence it follows (B), because

$$(6) A \cap B = (A \cap B)^2 \subseteq AB$$

holds for any two bi-ideals A, B of S.

Evidently $(\mathcal{B}) \Rightarrow (\mathcal{C}) \Rightarrow (\mathcal{D}) \Rightarrow (\mathcal{E}) \Rightarrow (\mathcal{F}) \Rightarrow (\mathcal{G})$.

(\mathscr{G}) implies (\mathscr{A}). Let S be a semigroup with property (\mathscr{G}). Then (\mathscr{G}) implies (3) resp. (4) for any element a of S. Thus S is regular. On the other hand, (\mathscr{G}) implies condition (\mathscr{D}) of our Theorem 2. Hence S is intraregular.

Theorem 3 is completely proved.

Remark 2. The first author proved in [4] that a semigroup S is a semilattice of groups if and only if the condition

$$(7) L \cap R = LR$$

holds for every left ideal L and every right ideal R of S. This criterion and our Theorem 2 imply that a semigroup which is a semilattice of groups is necessarily intraregular. Similarly it can be shown that also the semilattices of left [right] groups are intraregular semigroups.

For further characterizations by ideal-theoretical inequalities, see [6].

References

- [1] A. H. CLIFFORD-G. B. PRESTON, The algebraic theory of semigroups I,2nd edition, Providence, R. I., 1964.
- [2] L. Kovács, A note on regular rings, Publ. Math., (Debrecen) 4 (1955-56), 465-468.
- [3] S. Lajos, A remark on regular semigroups, Proc. Japan Acad. 37 (1961), 29-30.
- [4] S. Lajos, Characterization of completely regular inverse semigroups, Acta Sci. Math. (Szeged)
- 31 (1970), 229—231.
 [5] S. Lajos, Theorems on (1,1)-ideals in semigroups, K. Marx Univ. Economics, Dept. Math., Budapest, 1972.
- [6] S. Lajos-G. Szász, Generalized regularity in semigroups, K. Marx Univ. Economics, Dept. Math., Budapest, 1975.
- [7] G. Szász, Halbgruppen, deren Elemente durch Primideale trennbar sind, Acta Math. Acad. Sci. Hung. 19 (1968), 187-189.

(Received October 30, 1975.)