Periodic generalized functions

By A. SZAZ (Debrecen)

Introduction

In this paper, the theory of periodic distributions [1, 2, 3, 6, 7] is generalized
and simplified. The development parallels that given in [4], where periodic con-
volution quotients were constructed to generalize periodic distributions.

According to the results of [10], we consider multipliers [5] from the convolu-
tion algebra of all trigonometric polynomials into itself instead of periodic distribu-
tions and periodic convolution quotients. This yields some simplifications in the
corresponding theory and is in harmony with the conceptions of [8] and [9].

One of the most important features of the resulting theory is that it frees the
theory of periodic distributions from certain difficulties that arise because not every
trigonometric series converges there.

§ 1. The convolution algebra of continuous periodic functions

Let C,,=0C.(R™) be the set of all continuous functions from R™ into C that
are 2zn-periodic in each variable. It is known that C,, with the usual linear operations,
with the periodic convolution

1
U*8)) = G f = hatnd
and with the supremum norm

IfIF= sup |f(x)]
xER™

is a commutative Banach algebra with approximate identities.
For each k€ Z™, the function e, defined on R™ by

e( =™ =expi J k;x;
j=1

belongs to C,,. Moreover, the set T=T(R™) of all trigonometric polynomials,
i.e., the linear hull of {e;Jxcz= in C,, is a dense ideal in C,,.
For f€ C,,, the numbers
1

) =(fre)O =Gz [ e Mfwar

[—=, n™
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are called the Fourier coefficients of f. It is known that the set CZ™ of all functions
from Z™ into C equipped with the usual pointwise operations and with the topolozy
induced by the family of seminorms

4], = |A(k)| (4€C%")
is a commutative Fréchet algebra with identity such that the mapping
=7

is a continuous algebraic isomorphism of C,, into CZ".
For f€ C,, and A€ R™, the translate 7, f of f,

(T ) (x) =f(x+4),

belongs to C,, and we have
7,(f*g) = (1,f)*g and (7,f) (k) = e""‘f(k]

for all g€ C,, and ke Z™.
Finally, if f¢ C,, and 2¢€ R™ such that the directional derivative 9, f of f,

@,)(6) = lim— (£ (e +12) ~f ().

exists and is continuous on R™, then it belongs to C,, and we have

(f*8) =(0:f)*g and (9,f)" (k) = ikif (k)
for all g€ Cy, and k€ Z™,

§ 2. The convolution algebra of periodic generalized functions
Definition 2.1. A function F from T into T is called a periodic generalized
function if
F(o)=y = o*F(Y)
for all @, Y<T.
Example 2.2. If f€ C,,, then the function F, s defined on T by
Fe(p) =f*0¢
is a periodic generalized function.
Proposition 2.3. Let F be a periodic generalized function. Then F is linear and
F(oxy) = F(p)*y
Jor all o€ T and Y€ C,y,.
Proor. If @€ T and ¢ € C,,, then
F(op*y)*e, = (p*Y)* Fe) = (@ Fle) *¥ = (F(p) *e) xyy =
— (F(‘P)*lb)*eh
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and hence
(Flo#y)—F(p) %) (k) = ((F(p *y)— F(p) *¥) % ¢,)(0) =0

for all ke Z™, i.e., F(p#*y)—F(p)*y=0.
A similar argument can be used to see that F is linear.

Definition 2.4. If F is a periodic generalized function, then the numbers
F(k) = F(e)(0) (keZ™)
are called the Fourier coefficients of F.
Proposition 2.5. Let F be a periodic generalized function. Then
F(p) = % E(k) o (k)e,
keZm
Jor all peT.
ProorF. If @€ T, then @(k)=0 only for finitely many k< Z™, and
=2 ¢k)e.
kEZ™
Hence, since Fis linear and
F(e) = F(e,xe) = F(e) * e, = (Fley) * ¢,)(0)e, = F(e)(0)e, = E(k)e,
the assertion immediately follows.

Definition 2.6. Let T*=T*(R™) be the set of all periodic generalized func-
tions.
For F,GeT* and a<C let F+G, «F and F*G be the functions defined on

T by
(F+G)(o) = F(9)+G(9), (xF)(p) =aF(p)
(F*G)(@) = F(G(9)).
Moreover, for kcZ™, let || |, be the functional defined on 7* by

IFlle = I F(edl-

Theorem 2.7. With the corresponding operations and with the topology induced
by the family of seminorms || ||, T is a commutative Fréchet algebra with identity
such that the mapping defined on T* by

F - F

and

is an algebraic and topological isomorphism of T* onto CZ™.

PrOOF. By Proposition 2.5, it is clear that the mapping F—F is injective.
To prove that this mapping is into CZ™, suppose that 4¢CZ™. Let F be the func-

tion defined on T by
F@) = > 40oK)e.

Then a simple computation shows that FeT* and F=A4.
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Straightforward calculations show that if F, GET* and a€C, then F+G, oF,
F*GeT* and
(F+G)" = F+G, (aF)" =af, (FxG) =FG.
For example,
(FxG)" (k) = (F*G)(e)(0) = F(G(ey)(0) = F(G(k)e;)(0) =
= (G (k) F(e)(0) = (F(k)G (k)e,)(0) = F(k)G (k)

shows that (F*G)" =FG.
Finally, to complete the proof observe that

| Flly = !ﬂu
for all F€ T™ and k€ Z™.

Corollary 2.8. Let F€T*. Then the following propositions are pairwise equiv-
alent:

(i) F is invertible in T*;

(if) F is not a divisor of zero in T%;

(iii) F(k);éO for all ke Z™.
Moreover, if F is invertible in T*, then F is injective, the inverse function F~* of
F is the inverse of F in T* and

F (o) = 2' -—45( k)ex
F(k)
for all ¢€T.
Proor. This follows immediately from Theorem 2.7 and Proposition 2.5.

Corollary 2.9. Let (F,) be a net in T* and F¢ T*. Then the following propositions
are pairwise equivalent:

(1) li:nF,:F n T
(i1) li:n F,(k)=F(k) for all ke Z™;
(iii) lim F,(p)=F(9) in Cyy for all ¢ET.

PROOF. It is clear, that (i) and (ii) are equivalent, and that (iii) implies (i).
To prove that (ii) implies (iii), suppose that ¢ € T. Then there exists n€ N, such

that ¢(k)=0 if ke Z™ and |k|>n, where |k|= 3 |k,. Thus, by Proposition
J=1
2.5, we have

IE(0)~F@)l = || 3 (E-FR)o®Mel| = 3 [F.0)~FW||o®K)] =
= pax (R0~ F®) 3 160

for all a. Hence, it is clear that li:n F,(p)=F(¢) in C,,.
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§ 3. Embedding of complex numbers and continuous periodic functions

Definition 3.1. For a€ C and f€ C,, let F, and F; be the functions defined on
Thby
F(p) =ap and F(p) =f*¢.

Theorem 3.2. (i) The mapping defined on C by
a - F,

is an algebraic and topological isomorphism of C into T*.
(ii) The mapping defined on C,, by

f“‘Ff

is a continuous algebraic isomorphism of Cyy into T* such that F,;=f for all feC,,.
(iii) For a€C and f€C,,, we have F,=F; if and only if =0 and f=0.

Proor. To prove (i) and (ii) is left to the reader. We prove only the nontrivial
part of (iii). For this, suppose that a€C and f€C,, such that F,=F,. Then

a = F,(k) = Fy(k) = f(k)
for all k€ Z™. Hence, by the Riemann—Lebesgue lemma,
a= .f.iln.o f(k) = 0.
Thus f(k)=0 for all k€ Z™ This implies that f=0.
Definition 3.3. For a€C and f€C,, identify « with F, and f with F, by writing
a=F, and f=F,.

Corollary 3.4. Let FET*. Then

Fx¢ = F(p)
for all p€T.

Proor. If @7, then we have
(F*9)" (k) = F(k)p(k) = F(9)" (k)

for all k€ Z™. This implies that Fx o= F(¢).

Corollary 3.5. Let FET". Then

F= 3 F(k)e
kéEZm

o i

Proor. For each n€ N, let

.F' = Z F(k)eg-

|kj=n
Then F,(k)=F(k) if ke Z™ and |k|=neN. Thus
lim £, (k) = F(k)
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for all k€ Z™. Hence, by Corollary 2.9, it follows that
lim F, = F

in T* I
Corollary 3.6. T is a dense ideal in T~.
Proor. This follows immediately from Cerollaries 3.4 and 3.5.

§ 4. Translation and differentiation

Definition 4.1. For A€R™, let T, be the function defined on T by
T, () =1,0.

Theorem 4.2. Let /.€ R™. Then
() T,eT*;
(ii) T, (k) =e** for all ke Z™;
(iii) T, *f=t, f for all f<C,,.
PRrOOF. (i) and (ii) are obvious, namely 7 is linear and T;(e,)=e'**¢, for
all kezZ™.
If f€ C,,, then we have
(T )" (k) = T,(k) f(k) = ** f(k) = (z,.)" (k)

for all ke Z™. This implies (iii).
Definition 4.3. For A€ R™, let D; be the function defined on T by

D;(¢) =0, 0.

Theorem 4.4, Let /. R™. Then
() D,eT™;
(i) D, (k) =ik’ for all ke Z™;
(iii) D, *f=0, f if f€ Cy, such that 0, f< C,,.

Proor. (i) and (ii) are obvious, namely D; is linear and D,(e,)=ikie, for

all ke zZ™.
If f¢ C,, such that 9, f€ C,,, then we have

(D;#f)" (k) = Dy (k) f(k) = ikif(k) = (1.£)" (k)

for all k€ Z. This implies (iii). :
Remark 4.5. If u;€ R™ such that the jth coordinate of u; is 1 and the others
are 0, then we write D;=D, . It is clear that

for all i€ R™.
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Theorem 4.6. Let /€ R™. Then

lim = (7, ~1) = D,
R ot

PRrOOF. Let (2,);=, be a null sequence in R such that 7,=0 for all n€ N. More-
over, for n€ N, let
1

Fy=— (T~ ).

Then
lim £,(k) = lim !l(e"’"-"— 1) = iki = D, (k)

n=—- oo R== o0 n

for all ke Z™. By Corollary 2.9, this implies that
lim Fn = D;‘

n=—- oo

in:. 3™

Remark 4.7. Having been defined the exponential function of periodic general-
ized functions it can be shown that

T,'_ = eD)-
for all A R™

Note. A preliminary version of this paper was delivered at the Conference
on Generalized Functions and Operational Calculus, Varna (Bulgaria), September
29—October 6, 1975.

Finally, we remark that a similar theory can be obtained by considering linear
functionals on 7, but in this case the convolution becomes more difficult.
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