Standard ideals in matroid lattices

By M. STERN (Halle)

1. Introduction

In the papers [6], [7] and [8] for some classes of AC-lattices L necessary and
sufficient conditions were given for F(L) (the ideal of the finite elements of L) to
be a standard ideal.

If the underlying AC-lattice L is upper-continuous, that is, a matroid lattice,
then one can assign to each element a€L a uniquely determined cardinal number
r(a) which will be called the rank of the element acL?*). The set

Fy(L) = {ala€ L and r(a) = 8}

forms an ideal in L. We ask, under which conditions this ideal is standard. We
answer this question by generalizing our above mentioned results concerning F(L)
to the ideal Fy(L).

The roots for our topic can be found in the paper [3] by M. F. JANowiTZ. We
thank Dr. M. F. Janowitz also for his valuable remarks during our correspondence.

2. Basic notions

For two elements a, b of a lattice L, (a, b)) M means that the implication
c=b=(Va)\b=cV(alb)

is true; if this is the case, we say that (a, b) is a modular pair. If the above implica-
tion is not true for the pair (a, b), then we write (a, b) M.
If the implication
(a, )M = (b, a)M

holds in a lattice L, then L is said to be an M-symmetric lattice.

A lattice L with O is called weakly modular, if in L the implication

ahb #0=(a, b)M
holds.?)

1) cf. also S. MACLANE, A lattice formulation for transcendence degrees and p-bases, Duke
Math. J. 4 (1938), 455—468.
) We remark that in [1] the notion ,,weakly modular™ has been used in another sense.
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Let now A be a given complemented modular lattice with the lattice operations
L and 11 and let S denote a fixed subset of A— {0, 1} with the properties

acS and O0<b=a=0bcsS
and
a, beE S=ar beS.

If we endow the set L=A4—S with the order relation of A, then L becomes a
weakly modular M-symmetric lattice (cf. [5, Theorem 3.11, p. 12]). If a weakly
modular M-symmetric lattice L arises in the above described manner from a com-
lemented modular lattice, then L is called a Wilcox lattice.

The elements of S are said to be the imaginary elements for L. If S has
a greatest element 7, then i is called the imaginary unit for L.

An ideal R of a lattice L is called standard, if JA(RVK)=(JAR)V(JAK)
for every pair of ideals J, K of L (cf. [2]).

Let L be a lattice with 0. We say that ac L and b< L are perspective and write
a~b, if there exist an element xcL such that

aVx=bVx and aAx=bAx=0.

An ideal R of a lattice L with 0 is called p-ideal if a¢ R and b~ a implies bcR.
In a lattice L we write b<a (a,b€L) if b<=a and if b=x=a implies either
x=b or x=a. Let L be a lattice with 0 and let a, b€ L. We write a=|b if

ahb=0 and b < aVb.

If simultaneously a<|b and b<|a hold, then we call the elements a, b parallel
and write al|b (cf. [5, Definition 17.1, p. 72)).
The following assertion is mentioned without proof.

Proposition 2.1. Let L be a lattice with 0. Then every standard ideal of L

is also a p-ideal of L.

If 0<p holds in a lattice with 0, then p is called an atom. A lattice L is said
to be atomistic, if every element of L is a union of atoms. The covering property
is defined as follows: if p is an atom and p=£a (a, p)€L), then a<aVp. An atomistic
lattice with covering property is called an AC-lattice. A matroid lattice is an upper-
continuous AC-lattice.

3. Matroid lattices

We need the following

Proposition 3.1. Let L be a matroid lattice and let a,ccL with alc=0.
Then there exists a maximal m=a for which m/\c¢=0. Moreover, if pcL is an
atom with px£m, then c¢/\(mVp)=0 and c/N(mVp)<|m.

Proor. Consider the set

Y = {y|yeL, y=a and yAc =0}.
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(Y, =) is a partially ordered set (where = denotes the partial ordering of L). Y0
since a<Y. Let now K={y,|vél'} be a chain in Y. If we had
cAY(y|vel) =0

then there would exist an atom g€L such that

(1) g=c¢
and
g =V y|vel).
Since L is a matroid lattice, there exists a finite set {I, ..., n} such that
(2) q9=4,V..Vgq, (Er;i=1,..,n),

where the g,, are atoms and every g,, is less or equal to a certain y,. By y™ we denote
the greatest element among these (finitely many) y,. Then ¢, =y* (1=i=n). Because
of (2), we get from this also

(3) ¢:=3"
(1) and (3) together yield
0<g=cAy*

which is a contradiction since y* €Y.

Hence ¢/A\VY(y,|vél)=0 which implies VY (y,|vél)€K. This means that the
chain K has an upper bound in Y. According to the Lemma of Kuratowski—Zorn
Y has then a maximal element which we denote by m.

Let now p€L be an atom with px£m. Then m<mVp since L is an AC-lattice.
Because of the maximality of m we have mVp4¢Y and thus

(4) cAN(mVp) = 0.
Furthermore, we have
(5 cA(mVp)Am=cAm=0,

Moreover c/A\(mVp)£m, since c/\(mVp)=m implies ¢\(mVp)=c/A(m\Vp)\m=
=c¢/\m=0 which is a contradiction to (4). Hence it follows that
(6) m < m\p=m\V[c (mV p)l.

(5) and (6) together mean that
cAN(mVp)=|m
and the proposition is proved.
Now we assign to every element of a matroid lattice a well-defined rank.

Proposition 3.2. Let L be a matroid lattice. To every (0:£) x€ L there exists
a uniquely determined cardinal number r(x) which we call the rank of x.

Proor. Consider the set
A= A(x) = {p|p atom and p = x}

4
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of all those atoms p of L which lie under x. For the atoms p£ A4 and the subsets
PS A we define a binary relation

) D[p, A] <S> p=VY P.?)

It is easy to see that the such defined binary relation satisfies the conditions (I)—(IV)
of the abstract dependence in [4]. Thus (7) defines in 4 a dependence relation.
Consider now in 4 two arbitrary maximal independent sets of atoms S and 7.
By [4, Corollary] we have |S|=|T|?%), that is, two maximal independent sets of
atoms in 4 have the same power. This power, which is for every (0=) x¢€L uniquely
determined, will be called the rank r(x) of x.
We supplement the rank notion by defining r(0)=0. The cardinal number r(1)
(1 denotes the greatest element of the matroid lattice) will be called the rank of
L and will be denoted by r(L).

Let now a<b in a matroid lattice. By [5, Remark 13.2, p. 56] the interval
[a, B] is itself a matroid lattice. By r[a, b] we denote the rank of [a, b], that is, the
rank of b with respect to the interval [a, b]. We put r[a,al]=0. Evidently
r[0, 1}=r(L).

A matroid lattice L is said to be of infinite length, if r(L)=\,.

Proposition 3.3. Let L be a matroid lattice with a, b€ L. Then
r(a\V b) = r(a)+r(b).

PRrOOF. Let P be a maximal independent set of atoms in ¢<L and Q a maximal
independent set of atoms in h€L. Hence

|P| =r(a) and |Q| = r(b).

Consider the set theoretic union PUQ. With the aid of the atoms contained in
this union, the element aVb can be represented: if P={p,} and Q={g,}, then
V7.V Yqs=aVb. Consider now the sets P and Q—P. Evidently

PJ(Q—-P)=PUQ and PN(Q—P)=10
and therefore
r(aVb) = |PU(@—P)| = |P|+|Q—P| =

=r(a)+|Q—P| = r(a)+r(b).
Corollary 3.4. Let L be a matroid lattice of infinite length. For every cardinal
number R with R,=8=r(L) we define
Fy(L) = {ala€ L and r(a) < N}.

Then Fy(L) is ab ideal in L.

PRrROOF. Let a, b€ Fy(L). Then r(a), r(b)<={ and by Proposition 3.3. we have
r(@aVb)=r(a)+r(b) and thus aVbhe Fy(L). Let now acFy(L) and b=a. Then
r(b)=r(a)<\ and therefore bc Fy(L).

%) By VP we denote the union of all atoms contained in P.
%) |S| denotes the cardinal number of §.
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For matroid lattices L, the ideal Fy (L) coincides with the set F(L) as defined
in [5, Definition 8.1, p. 35], that is, Fy (L)=F(L). F(L) consists of the element
0 and of all those elements of L which can be represented as a union of finitely
many atoms. F(L) is also called the ideal of the finite elements of L; it is defined
for arbitrary AC-lattices.

As a further preparation we need a theorem which characterizes the standard
ideals in arbitrary lattices.

Proposition 3.5. (cf. [2, Theorem 2, p. 30]). An ideal A of a lattice L is standard
if and only if
AV(x] = {aVx,|a€A and x, = x}

holds for every principal ideal (x] of L.
Now we are ready to generalize [7, Theorem 3.2] in the case of matroid lattices
on arbitrary Fy(L).

Theorem 3.6. Let L be a matroid lattice of infinite length and let No=8=r(L).
Then the following three conditions are equivalent:

‘(i) Fy(L) is a standard ideal in L;

(i)%f [x, bV x] and [b/\x, b] are transposed intervals and r[x,b\Vx]<§ then
also r[b/\x, bl=\:

(ii1) for the tripel a, b, x€ L the following implication holds: if b=aVx and
ac Fy(L), then there exists an a € Fy(L) such that b=(b/\x)Va,.

PrROOF. (i)=>(ii): let Fy(L) be a standard ideal and let r[x,bVx]<§. It
follows that there exists in [x, bV x] a set C of elements {c,|¢,> x; véI'} such that
bVx=V¥(c,|ver) and |C|=|{c,|vETr}|=R. By [5, Lemma 8.18, p. 39] there
exists to every ¢, an atom p, of L with the property

(8) ¢, = xVp, (for all ver).

Consider the set P={p,} of all those atoms of L which are by (8) assigned to the
¢,. Because of (8) we have |P|=|C| and hence |P|<={§. Put now

a == ¥ (p,|veD).
x=aVx=(VYp)Vx=VY(@,Vx)=¥Yec,=bVx

and r(a)<N; hence acFy(L). From this it follows that b€ Fy(L)V(x]. Thus
by Proposition 3.5 there exists an

Then

&) X=X
and an
(10) a,€ Fy(L)
such that

b=x,Va,.

Because of (10) we have r(a;)<§. Hence we obtain (again using [5, Lemma 8.18,
p. 39)
(11) rlx,. x;Va,) = r[x;. b = .
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Moreover we get by (9) and by b=x,Va, the relation

x; = xAb=b.
Using (11) we get from this

rlx/b,b] = N
which was to be proved.

(i))=(iii): let b=xVa and a€Fy(L). Then r[x, xVa]<N. Because of x=
xVb=xVa wealsohave r[x, xVb]<N. Then r[x/ b, b]=n follows by (ii). Similarly
as in the proof of the implication (i)=>(ii) one can show the existence of an a, € Fy(L)
with b=(x/\b)Va,.

(iii)=>(i): this implication follows immediately from Proposition 3.5, and the
theorem is proved.

It is not difficult to prove also [7, Lemma 3.4] in the case of matroid lattices
for arbitrary Fy(L):

Proposition 3.7. Let L be a matroid lattice of infinite length and let R,=8=
=r(L). Consider the following four conditions:
(i) Fx(L) is a standard ideal in L;
(1) Fy(L) is a p-ideal of L;
(ili) y<|z=>y€ Fy(L);
(iv) y | z=y€ Fy(L).
Then (i)=(ii)=(iii)=(iv).

PROOF. (i)=>(ii): this follows from Proposition 2.1.

(ii)=>(iii) : assume that there are elements y, z€ L such that y=|z but y¢ Fy(L).
For an atom p<y we obtain then p~ y, which means that Fy(L) is not a p-ideal.

(iii)=>(iv): this implication follows from the definition of parallelity.

4. Weakly modular matroid lattices

In the case of weakly modular matroid lattices we are able to give further
necessary and sufficient conditions for Fy(L) to be a standard ideal.

The following theorem is a generalization of [6, Corollary 8] (cf. also [7, Cor-
ollary 5.2]) on arbitrary Fy(L).

Theorem 4.1. Let L be a weakly modular matroid lattice of infinite length and
let Ro<N\=r(L). Then the following three conditions are equivalent:
(i) Fx(L) is a ctandard ideal of L;
(i) Fy(L) is a p-ideal of L;
(iil) y<|z=y€ Fy(L).

PROOF. (i)=(ii)=(ii1): these implications follow from Proposition 3.7.
(iii))=(i): by Theoren: 3.6 it is sufficient to show that the implication

(12) rlx, bVx] <= R =r[bAx,x] <= 8
is true. Let therefore
(13) rlx,bVx] = 8.

We distinguish two cases: b/Ax=0 and b/ Ax=0.
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Let first A/\x=>0. Then [bAXx) is a modular matroid lattice and
bAx, x, b, b\ x€[bA x).
Since in a modular lattice transposed intervals are isomorphic, it follows that
r[bAx, b] = r[x, byx].

Because of (13) we have thus
r[bAx, b] = N.

This means that (12) is true in case bAx=0.
Let now b/Ax=0. Then [0, b\/x] is likewise a matroid lattice and by Proposi-
tion 3.1 there exists a maximal m<[0, b\ x] for which

(14) x=m<bVx

and

(15) bAm =0

hold. By (14) it follows that there exists an atom p<L such that
(16) m<mVp=>bVx.

Then we obtain again by Proposition 3.1 that

(17) bA(m\Vp)=0

and

(18) bA(mV p) <|m.

From x=mVp=b/A\(mVp)=bVx it follows by (13) that
(19) r[mVp, bA(mVp)] = N

holds. Moreover, the principal ideal [6/A(mV p)) is a modular lattice by (17) (for L
is weakly modular) Thus we obtain

r[b/A(mV p), b] = r[mV p, b\ (m\ p)]

since transposed intervals of a modular lattice are isomorphie. By (19) we get from
this that

(20) r[bA(mVp), b] = &

Furthermore we get from (18) by (ii) the relation
bA(mV p)e Fe(L)

and thus

(21 r[0, bA(mV p)] = N.

(20) and (21) together yield®)
r[bAx, b] = r[0, b] = r[0, bA(mV p)]+r[bA(mV p), b] =< R+ 8 = N\.
This proves (12) in case bAx=0 and the proof is finished.

) It is not difficult to show the property of the rank used here.
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Corollary 4.2. Let L be a weakly modular matroid lattice of infinite length and
let Ro=N=r(L). Then the following two conditions are equivalent:

(i) F(L) is a standard ideal of L;

(i) Fy(L) is a standard ideal of L for all (Rg=8=r(L)).

ProOF. (ii)=>(i): if Fy(L) is a standard ideal for all § with {,=8=r(L), then
in particular, Fy (L)=F(L) is a standard ideal.
(i)=(ii): let now F(L) be a standard ideal in L. Then by Proposition 4.1 the
implication
y <|z=yeF(L)

holds in L. Since F(L)S Fy(L) for all ¥, it follows that y€ Fy(L) for all
R (Rg=N=r(L)). Thus condition (iii) of Theorem 4.1 is satisfied. Condition (i)
of Theorem 4.1 yields now that Fg(L) is a standard ideal for all & with 8, =8=r(L).

5. Non-modular affine matroid lattices

First we give some notions and definitions.

Axiom (*Euclid’s weak parallel axiom”, cf. [5, p. 78]). Let g be a line in a ma-
troid lattice (that is, an element with r(g)=2). If p is an atom with p£g, then
there exists at most one line 4 with g||lh and p<h.

Definition (cf. [5, Definition 18.3, p. 78]). Let L be a weakly modular matroid
lattice with r(L)=4. If in L Euclid’s weak parallel axiom holds, then L is called
an affine matroid lattice.

Between non-modular affine matroid lattice and Wilcox lattices we have the
following connection:

Theorem ([5, Corollary 19. 14, p. 90]). If L is a non-modular affine matroid
lattice, then L is a Wilcox lattice with imaginary unit.®)

Remark 5.1. If L=A—S is an AC-lattice, then A is also an AC-lattice ([5,
Lemma 20.3, p. 91]). If L is a matroid lattice, then A is likewise a matroid lattice
(for the atoms of L coincide with the atoms of A and the union of elements in L
coincides with the union of these elements in A). It is therefore clear, what we mean
by Fy(A). If L is a matroid lattice, then it follows by [5, Lemma 20.2 and Lemma
20.3, p. 91] that a€ Fy(L) holds if and only if a¢ Fy(A). Moreover the rank r(a)
of a in L coincides with the rank of @ in A.

For non-modular affine matroid lattices we generalize now [8, Theorem 4.3]
on arbitrary Fy(L).

Theorem 5.2. Let L=A—S be a non-modular affine matroid lattice of infinite
length and let X, =N\=r(L). Then the following conditions are equivalent:
(i) Fy(L) is a standard ideal of L;
(ii) Fy(L) is a p-ideal of L;
(iii) y=<|z=y€ Fy(L);
(iv) yllz=ye Fu(L);

®) With the notations of § 2 we may therefore write L= A—S.
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(v) SS Fu(A);
(vi) i€ Fy(A); ,
(vii) M(L) N Fy(L)>{0}.)

PROOF. (i)=>(ii)=>(iii)=>(iv): these implications follow from Proposition 3.7.
(iv)=>(v): for the set S of the imaginary elements for L we have S&A4-0,1.
Hence if u€S, then we have

(22) u=0,1.
Choose an atom p< L for which
(23) p=Eu.

Because of (22) this is always possible, since L is an AC-lattice. Consider now the
element

(24) a=pVu=plu

(by [5, Theorem 3.11, p. 12] the union of two elements in L coincides with the union
of these elements in A). By (22) and (23) it follows that r(@)=2 in L and in A
(cf. Remark 5.1). The element a<L is by [S, Definition 21.1, p. 96] singular. We
distinguish now the cases a=1 and a=1.

If a=1, then there exists by [5, Lemma 21.7, p. 97] an element b€ L such that
a| b. By (iv) it follows that a€ Fy(L) and from this a€ Fy(A) by Remark 5.1. By
(24) we have u=a in A and therefore u€ Fy(A) holds.

If a=1, then there exist by [5, Lemma 21.7, p. 97] two singular elements a,, a,1
such that a,Va,=1. Similarly as above, we obtain a,, @,€ Fy(L) and thus a,Va,=
=1€Fy(L). From this it follows by Remark 5.1 that 1€ Fy(A).

(v)=(iii): let y<|z. If y is an atom, then, of course, y€ Fy(L). If y is not an
atom, then y-<|z implies by [5, Lemma 17.6, p. 72] the relation (z, y) M. Moreover
by [5, 3.11. 5,p. 12] (z, ) M in L holds if and only if zry4 L. Hence zrMy€ .S and
by condition (v), it follows that

(25) zMy€e S S Fy(A).

By z<zVy=zy in A it follows that also zMy <y because of the modula-
rity of A. Thus we obtain by (25) that y€ Fy(A) and therefore y< Fy(L) (cf. Re-
mark (5.1).

(iii)=>(i): this implication follows from Theorem 4.1.

(v)=(vi): let S= Fy(A). By [5, Corollary 19.14, p. 90] L has an imaginary
unit i. Since i€ S, we get also i€ Fy(A).

(vi)=(v): this implication is true, since w=i for all u<S.

(vi)=(viii): this implication follows from [5, Lemma 22.4, p. 104]. This proves
the theorem.

7) M(L) denotes the modular center of L (cf. [5, Definition 22.4, p. 104]).
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