On additive functions

By I. KATAI

1. Let f(n) and g(n) denote additive arithmetical functions. Some years ago
I proved that from
AR T _
(L.1) lim — 2> [f(n+1)—f(n)| =0

s nsx

it follows that f(n) is a constant multiple of log n [1]. This was an old conjecture
of P. ERDOs [2]. Almost at the same time E. WIRSING [3] obtained a stronger result,
namely that from

(1.2) iminf~ 3 [f(n+1)—f(n)| =0

x=o X x=pn=(1+7)x

— 7 being a positive constant — it follows that f(n)=c log n.
The purpose of this paper is to generalize my previous result in two directions,
which we state as Theorem 1 and 2.

Theorem 1. Let f(n) and g(n) be additive functions and the relation

(13 liminf (log )~ 3~ [g(n+1)—f(n)| = 0

n=x

hold. Then f(n)=g(n)=clogn.
Let A* f(n) denote the k'th difference of f(n), i.e. A'f(n)=f(n+1)—f(n),
and generally
A'f(n) = A" f(n+1)— 47" f(n).

Theorem 2. Let f(n) be an additive function and for some positive integer k the

relation

& _
(1.4) liLr_l_igf (logx)~* > _|4_|_f_'_(_r_1_)_ =0

n=x h

hold. Then f(n) is a constant multiple of log n.
Namely for k=1 Theorem 2 gives that f(n) is a constant multiple of log n, if
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n=x n

(1.5) lim inf (log x)~*
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This a little stronger assertion then that was published in [1] but weaker than the
cited result due to Wirsing.

First we prove Theorem 2 in the case k=1. After then we prove that from
the condition (1.4) it follows that it holds for k—1 instead of k. Finally we prove
Theorem 1 by showing that from (1.3) f(n)=g(n) follows.

2. Proof of Theorem 2 for k=1

We need a lemma.
Lemma 1. If (1.5) holds then f(n) is completely additive.

Proor. Let
(2.1) ga(n) = _max _|f(n+j)—f(n).

Then from (1.5) we get easily that

2.2) lim inf% 5 ol e 0

nsx
for every fixed a.
We need to prove that f(p*)=vf(p) for all prime-power p*. For an arbitrary
N coprime to p we have

f(P)+f(N) =f(p*N) = {f(p"N)~f(p*"N+p)}+f(p)+f(p* 'N+1) =...
v—2
~={f(p"N)—f(p’N+p)}+ 21' {fp" ' N+1)—f(p*~'j+p)}+
=

+{f(eN+1)=f(pN)}+f(N)+vf(p).

Hence
If(P")—vf(p)| = g,(pP"N)+g,(p*"'N)+...+g,(pN),
and so
=@l 3 1= 3 g,(m).
N=x mExp
(N, p)=1

Since

2 1=x(1-1/p)+0(),

Ns=sx

(N, p)=1

by (2.2) we have f(p")=vf(p). This completes the proof of our lemma.
Let x,=p*(v=0,1,2,...) where p is an arbitrary prime. Let for x,=N<x,,,

2.3) N =J§“0 a;(N)p*~1

be the p-adical representation of N. Then
0=a;(N)=p—-1 (0=j=v), a((N)=1.
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For an arbitrary N let the sequence (N=)N,, N, ..., N, be defined as follows:

2.4) Ne=3 a;(N)p=i* (k=0,...,).
j=0
So we have
(2.5) Nioa = pNe+a, 4 (N) (k=1,...,v).
Since
f(No) = {f(No) =f(pN)}+ {f(N) —f(pNo)} + ...
+{f(N,-1) =f(pPN)}+f(N,) +vf(p),
we have
I[f(N)—vf(p) = gp(N0)+gp(Nl)+“‘ +gp(N\’—l)+Ap,
where

Ay =,_max_ ()

i=1

For N€(x,, x,:1) we get N,€[x,_;,X,_x4+1). Furthermore, any fixed m in
[Xy-x> X,+1-x) Occurs exactly p* times as N,. Therefore

2 fN)=vf(p)| = 2 8N+
Xy+1 x,=N<x,,, v+l x,=N<x,,,
1 g, (N)
—_ N)+..+4,= -4+ 4,.
+x, xv_l_s%:<xv gp( ) i . N§§+1 N *

Since v= IIZ%] for x,=N=<x,,,, therefore we have

f(N) )
log N logp

1

Xy+1 x, =N=x, .,

o g (N)

26 =
(2:6) logx,os ve2., N

¢, and later ¢, are suitable constants.
Similarly, when ¢ is another prime, y,=¢", then

1 JIN) f@f_ _ < 8 (N)
Yu+1 y,@N=y,,, |08 N logq| ™ logyus1 n=y,,, N

Let g<p. Then the interval (x,, x,,,) contains an integer-power of ¢, say y,. Then
there is at least one subinterval 7, in [x,,x,,,) with length greater than cx, .,
(c being a positive constant) the endpoints of which are powers of p and ¢g. Then
by (2.5) and (2.6)

1 i f@|_. _« g,(N)
) Xy41 Ner, |logp logg| logx,y n=i),, N
Since
lim inf (log x,+,)~* 2 NgN)=0 and 2 1&cx,y,
we have i idae
fp) _ @
logp logg’

This completes the proof of our assertion.
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3. Reduction step

Let H, denote the assertion stated in (1.4). We prove that H, implies H, _,
for k=2.
Let 4,f(n)=f(n+2)—f(n), and

(3.1) 44 f(n) = 447 f(n+2)— 4§~ f(n).
Lemma 2. For every n
IR
3.2) aifo = 3 () a5+,
and for every odd n :
(33) sifo = > (5) sren+2p
hold. '

The proof of these relations is straightforward so we omit it.
From (3.2) we get — using it by k—1 instead of k —

k-1 k=1 = k_l k g
(3.4) a2 n-a o = 3 (<5 #pmei.

j=0

Furthermore from (3.2) we get the relation

k(k
3.9 a5 = 3 (§) 1450+,
i=0
Hence
(3.6) B+ 2)— B )] = 241 3 A (n ).

From (3.3) we get for odd n» — using it by k—1 instead of k —

' S =
s m-2atpen = 3 (7 )t pens 2 st
and hence

(3.8) 14311 (n) — 22451 f(2n)| = 2% 1:2—.1 |48 f(2n+2h)|.
h=0
Let
2= v=LE o) L= )
and
3.9 a(v) = J |4 (n+1)—41f(n)| = 5 |4*f(n)|.

nel, nel,

Let B, C, E denote the set of even, odd, two-times-odd integers, respectively. Corre-
spondingly let B(v), y(v), &(v) the sum

2 1457 f(n)]

where we take the summation over the sets B(\I,, C(I,, EMNI,, respectively.
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From (3.6) and (3.2) we get
yv+1) = 3 |45 Cm)| =2 F |47 2m)|+2 ) |43f2m)| =

2mel, 4 mgf mel,
m

= 2g(v+1)+2%+1 > A f(m)l.

Tvdl=m=x, ,+k

Assume now that k<x,,.,. Then
(3.10) y(v+1) = 2e(v+ 1)+ 2% (a(v+ D) +a(v+2)).
From the inequality (3.8) we get

1 .
v+l = 3 |47 Cm)| = 5 3 145 ()] +
meB mes

(3.11)
+k = |4 f(2m)| = -z-il_—lﬁ(v)+2"k(a(v+])+rx(v+2)).

Xy=EMEX, .9~

So by (3.10) we get
(3.12) y(v+1) = 2Tl_§—ﬁ(v)+2”+2(a(v+l)+a(v+2)).

Similarly from (3.4) we get easily that

(3.13) B+ 1D—y(v+1)| = 2 (a(v+1)+a(v+2)).
So we have
(3.14) Bv+1) = %ﬂ(v)+c1(k)(a(v+l)+cx(v+2))

if k=x,.,, where ¢;(k) is a constant that depends only on k.
From the condition (1.4) it follows that

rye 2 A Y] a(v)
(3.15) llmumf;‘é; R 0.
Let g,:%l. From (3.15) we have
1
(3'16) Qv+1 é'z"r_-i'gv+7v9 (xvgk)

where

a(v+1 a(v+2
Ty = c2(k)[ (2v+1 ) + (2v+2)

Let u,<p,<... be a sequence of integers so that

(3.17) 3 8l e

.rul' V=g,

255
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From (3.15) we can deduce easily that

fid L 3 w0

1o Uy vy,
Observing (3.13), we have ;
1 gk=1
(3.18) lim (logx,)! 3 ’A‘nﬂ =0.
b Mgt n=x

Fe

From (3.2) we get

a2 = 3 () o - a0y =

-5 ()5 #rnsn).

Jj=0
and hence
1 2k—3
442 ()| = ==y |45 f ()] + k- zu 4% f(n+ h),
Jj=

and so

k-1 k-1 k |

nsx n=x n=x+2k

Let now x be choosen as x=x,—2k. Then from (3.17) and (3.18) we get

(3.19) lim(ogx,) 3 A0 _g

uﬁx"‘—zt
So we proved that the condition H,_, holds.
By this, Theorem 2 has been proved.
4. Proof of Theorem 1

We need to prove only that from (1.3) the relation f(n)=g(n) follows.
Let o(n)=g(n+1)—f(n), and H(n)=g(n)—f(n). We observe that

(4.1 g(16k+12)—f(16k+10) = [g(4)—2(2)—f(2)]+ 2 (8k+5)
and that
(4.2) g(16k+12)—f(16k+10) = o(16k+11)— H(16k+11)+ ¢(16k+10).

Let C=g(4)—g(2)—/(2).
From (4.1) and (4.2) we have

(4.3) C+H(16k+11) = o(16k+11)+ o(16k +10)— o (8k +5).
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Let m=1mod 16 be an arbitrary but fixed integer, and 16k+11 coprime to
m. Then from (4.3)
C+H(m(16k+11)) = g(m(16k+11))+o(m(16k+11)—1)—p [
and so

H(m) = o(m(16k+11))+ o(m(16k+ 11)—1)—9[

m(16k+11)—1 ]
2 -]

m(16k+11)—1 ]_
2z

—o(16k+11)—0o(16k+10)+ o(8k +5).
Hence we have

|H(m)| 2 =6 Z@-

k=x n=18x N
) (k, m)=1
Observing that
lim (logx)~* 2 1/k=0,
5 (k*!ixl

and (1.3), we obtain that H(m)=0.

Let my=m, (mod 16) be odd integers. We can choose a v so that (m;m,, v)=1
and m;v=1(mod 16). Then H(m,)+H(v)=H(my)+H(v)=0, whence H(m)=
=H(m,). We have that the value of H(m) depends only on the residue class
m (mod 16). But this is possible only if H(m)=0 for every odd n.

Let n=1mod 3. Then

(4.4) o(n) =0@Bn+2)+0Bn+1)+03n)—H@Bn+2)—H3n+1).
Let B, denote the set of those integers n, for which
n=1 (mod3), 2*3n+1

hold. For n€B, (x=1) H(3n+2)=0. From (4.4) we get

H@)| 3 L=3 3 el
nnéﬁﬂt m=dx m

Observing that
lim (logx)~* > %:- 0,

n=x
neEB,

from the relation (1.3) H(2*)=0 follows. Consequently H(n)=0 identically, and
so Theorem 1 is a consequence of Theorem 2.
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