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1. Introduction. The principal results of this paper are contained in Theorem
6 of Section 2 wherein formulas for the number of nonsingular nXn matrices over
a finite field with a fixed trace are stated. A corollary result is a formula for the
number of nonsingular commutators of order n. In Section 3 we evaluate a sum
which is a variation of a formula of HODGES [4].

2. The number of nonsingular commutators over a finite field. We use the custom-
ary GF(q) for a finite field of g=p" elements. All matrices mentioned in this paper
are square unless otherwise specified. Recall that the trace of a matrix is the sum
of its diagonal elements. The reader is also reminded of the meaning of commutator:
A matrix B is a commutator if and only if there exists matrices X and Y such that
B=XY—YX. A useful characterization of commutators is given by the following
theorem [1, p. 2]:

Theorem 1. A matrix over a field F is a commutator if and only if its trace is zero.

Let us introduce the following notation: For any positive integer n and any
kcGF(q) let ¢,(n) denote the number of nonsingular matrices over GF(g) of order
n and trace k. Thus it is evident from Theorem 1 that ¢,(n) is the number of com-
mutators of order n over GF(g). If we let N(n) denote the number of nonsingular
matrices of order n over GF(g) we obtain the following:

Theorem 2. ¢y (n)+(q—1)@(n)=N(n) for any k#=0.

ProoF. We first show that if A=0 and k=0 then ¢,(n)=@,(n). This follows
by observing that the function f(A4)=kh 'A is a one-one mapping of the set of
nonsingular matrices of trace 4 onto the set of nonsingular matrices of trace k.
Since there are ¢—1 choices for k=0 the theorem follows immediately.

The following two theorems are special cases of a theorem of LANDSBERG [6],
but we state them for use later in this paper.

Theorem 3. N(n)= .}'jl(qu_qi).

Theorem 4. If Q{na n) denotes the number of mXn matrices of rank m over
GF(q) then Q(m,n)= ]] (g"—q’).

By use of Theorems 2 and 3 we are able to derive explicit formulas for ¢,(2)
and for any k<GF(q).
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Theorem 5. ¢,(2)=¢*(g—1) and ¢, (2)=q(g*—q—1) for any k=0.
PRrROOF. To determine ¢,(2) we note that any 2 X2 matrix 4 of trace 0 will have

the form A=[g _2]. We see that there are ¢® matrices of this form over GF(q).

To determine the number of non-singular matrices of this form we shall subtract
from ¢* the number of singular matrices of this form. But the number of singular
matrices is given by the number of ways det(4)= —a*—bc=0.

Case 1. Suppose b#0. In this case b can be chosen in g—1 ways, a in ¢ ways
and c is fixed. Thus there are g(g — 1) matrices of the required form. Case II. Suppose
b=0. Then a=0 and ¢ can be any one of g choices. Hence in this case there is
a total of ¢ choices 4. On combining cases I and Il we see there are ¢ singular
matrices of form A and the formula for ¢,(2) follows.

On using this last result along with Theorems 2 and 3 we get

(@—1D)+(g—De(2) = (¢°—1)(g*—9g).

On solving for ¢,(2) we get the desired result.
We now prove three lemmas which ultimately lead to formulas for ¢ (n) in
Theorem 6.

Lemma 1. If o,(n) denotes the number of nonsingular matrices of order n and
trace k having at least one non-zero element in the nth column above the (n, n) posi-
tion then

@x(n) = o (n)+q" ' [N(n—1) =@ (n—1)].

ProOF. We shall let f,(n) denote the number of nonsingular matrices 7 of
trace k and order n having zero in every position in the nth column above the (n, n)
position. Then, clearly, @ (n)=a.(n)+p(n). We see that T has the form

0 : ;
T:[g t] where A is (n—1)X(n—1) Bis 1 Xn—1 and ¢ is a scalar. For T to be

nonsingular A must be nonsingular and can be chosen in N(n—1) ways. For each
choice of A4, ¢ is fixed since the trace of T must be k. B can be chosen arbitrarily
in ¢"~! ways. Thus, at this stage, T can be chosen in ¢"~'N(n—1) ways. But not
all of these choices are nonsingular. For if tr(4)=k then r=0 and T is singular.
tr(4A)=k for @ (n—1) choices of 4. Hence T is singular in ¢"~'¢.(n—1) ways.
It follows that S (n)=¢""'[N(n—1)—¢,(n—1)] and the theorem results.

Lemma 2. o, (n)=[Q(n—1,n)—N(mn—-1](g"*—q¢"?).

PrROOF. Let V be any nonsingular nth order matrix of trace k with a non-zero
element in some position in the nth column above the (n, n) position. Then V' has

the form V= [g f] where A is square of order n—1, B is of dimensions 1 Xn—1,

C#=0 is n—1X1 and v is scalar. Since V is nonsingular [4AC] must have rank n—1
so could be chosen in Q(n—1, n) ways. However, some of these choices will be
those with C=0 and these cannot be used as part of V. There are N(n—1) such
possibilities so that we may choose [AC] in exactly Q(n—1,n)—N(n—1) ways.
Since the trace of V is fixed, after choosing its first n—1 rows, v is fixed. Then there
are ¢"~! choices for B. But not all of these choices of B yield a nonsingular ¥V, We
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must subtract from the ¢"~! choices of B those choices such that [Br] is a linear
combination of the top n—1 rows of V. From those n—1 rows select one such that
the last element is not zero. In forming linear combinations of the top n—1 rows
the scalar coefficients of the remaining n—2 rows may be chosen arbitrarily. But
the scalar coefficient of the selected row with non-zero last element is then fixed
so that the last element in the linear combination is v. There are ¢"~* such com-
binations. Hence, there are ¢"~'—¢"~* choices of [Bv] which are not linear com-
binations of the rows of [AC]. It follows that

% (n)=[Q(n—1,n)=N(n-1)](g" " —q""?).
Lemma 3. g, (n)—N(n)=—q""'[gpi(n—1)—N(n—1)].
PrROOF. On combining Lemmas 1 and 2 we get
@(n) =[Q(n—1,n)—Nn—Dl(g""'—¢" ") +¢" ' [N(n—1)— g, (n—1)].
On simplifying we obtain
@u(n) = (¢"'—q""HQ(—1,n)+¢g"*N(n—1)—q"" ¢, (n—1).

Hence, g (n)= (q —q" N0 n—1,n)+qg" ' [INn—1)—gqe,(n—1)]. But by Theorem
4, Q(n—1,n)= H (¢"—¢’) so that (¢"—¢""")Q(n—1,n)=(¢"—¢""") H(q -¢)=

n=1

= I (@—q) whlch is N(n) by Theorem 3. Therefore, the lemma follows.

=0
The preceding lemmas culminate in the following theorem which gives a closed
form expression for the number of nonsingular matrices of order n which have
a given trace:

Theorem 6. @, (n)=N(n)/g+(—1)""2q"-2U+V2(g 1) and, for k=0,
@u(n) = N(n)/g+(—1)y—1gn-dm+nre,
PrROOF. By the use of Lemma 3 repeatedly we get
qi(n)—N(n) = —¢"'[go(n—1)—N(n—1)]
= ¢"7'¢"*[gpe(n—2)— N(n—-2)]

=(=D"%" " ¢*lgen (D) - N(2)]
= (=1)""2q"-P+12[g,(2) - N(2)].
From Theorems 3 and 5 we get
qpo(n)—N(n) = (=1)""2q"=2"*V2[q. g*(g—1)—(g*— 1)(¢*—q)].
And, on simplifying,
@o(n) = N(n)/g+(—1)""2¢"~P+D2(g—1).



262 Larry S. Johnson, A. Duane Porter and Verne J. Varineau

On using Theorems 3 and 5 for k=0 we obtain

qoi(n)—N(n) = (=1)"2g"-2+D2 (g2 (g2 — g —1)—(¢*— 1)(¢*— q)] =

= (- l)n—iqlﬂ——'zl (n +l])'2(_ q)
Hence,
oun) = N(w)g-+(— 1y 120072

Corollary. The number of nonsingular commutators of order n over GF(q)
is given by N(n)/g+(—=1)""2g'"-2 D2 (g 1),

Proor. This follows from Theorem 6, Theorem 1 and our notation.

3. Evaluation of an exponential sum. The problem of finding the number of
matrices U and V, when U is mXn and V is s Xt, which satisfy the matrix equation
UAV=B, with A and B arbitrary, but fixed, matrices of orders nxs and mXxt,
respectively, has been solved by Joun H. HoDGES [4].

In connection with this problem, certain exponential sums were defined for
rectangular matrices having elements in GF(g). Analogous sums for symmetric,
skew and hermitian matrices were also discussed by L. CarLITZ and HODGES [2],
[3], [5]. The exponential sums in these papers have all been explicitly evaluated,
but the results in some cases are very lengthy and detailed. By use of concepts
related to this paper, we are able to obtain a short evaluation for a variation of
the exponential sum discussed by Hodges in [4].

As in Hodges’ paper, we define

e(x) = exp (2rit(x)/p)
t(@) = a+a?+...+a? 7,
where 2<GF(g), and g=p/. It follows that

e(a+p) = e(x)e(p)

{q if a=0
0 if a=0.

and

2 e(@p)=

BEGF(q)

From this last equality it follows that if 4 is nXn, then

{q"‘ if A=0

0 otherwise,

(1) 2 elo(4B)} =
B(n,n)
where the sum is over all #nXn matrices B. Here o(A4) denotes the trace of 4.
Now we define
H(B,n) = D e{—a(BC)}
)

C(m, n

where the summation is over all nX»n matrices C with rank n. Hodges [4; p. 506]
gives an explicit value of H(B, n). We will also need the following theorem:

Theorem 7. The only matrices which commute with a nonderogatory matrix A
are the polynomial functions of A. [7; p. 94].
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Equation (1) is the basis for a technique of counting solutions of certain matrix
equations. It is this technique and Theorem 7 which enable us to prove the follow-
ing theorem.

Theorem 8. Let A be a nonderogatory matrix whose minimum polynomial is
irreducible over GF(q). If there is a solution of AX—XA=C, then there are q" such
solutions and furthermore

2 e{—a(CD)} = ¢",

D(n, n)

where the sum is over all nXn matrices D which are polynomials in A.

PrOOF. We assume that C is a matrix such that AX—XA4=C has a solution.
Then every solution can be obtained from a sum of this C and a general solution
of AX—XA=0. But by Theorem 7, there are exactly ¢" solutions of 4X—XA=0,
namely the polynomials in A. Thus, there are precisely g” solutions of AX—XA=C.

In view of (1) above, the number N of solutions of AX—-XA=C is given by

g™ 3 3 elo[((4X—Xx4)—-C)D]},

X(n, n) D(n,n)

where the sums are over all n>Xn matrices D, and all n>Xn matrices X. Thus, by
using properties of trace and the exponential function, we have,

N=q™" 3 elo(-CD)} X{Z)e{cr[(AX—- XA)D]}.

But, since ¢(AB)=0c(BA), we have
c[(AX—XA)D] = 6(AXD—XAD) = 6(AXD)—0(XAD) = 6¢(DAX)—06(AXD) =
=0o[(DA—AD)X).

N=g¢g™ > e{o'(—CD)}XZ e{c(DA—AD)X}.
) (n, n)

(n, m

Therefore,

But again by (1) above

> e{lo(DA—AD)X) =

{q-‘ if DA—AD =0,
X(n, m)

0 if DA—AD =0.

Therefore,
N= J elo(—CD)}-M,
D(n, n)

where
{ 1 if DA—AD =0,

0 if DA—AD #0.
But DA—AD=0 if and only if D is a polynomial in 4. Therefore,
N =DZ)e{a(—-— CD)} = ¢",

(n, n

where the sum is over all nXn matrices D which are polynomials in A.
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The above theorem shows in particular that if C is nonsingular and there is
one solution of AX—XA=C, then there are exactly ¢" matrices X such that
AX—-XA=C. We now give an example of an 4 and a nonsingular C such that
AX—XA=C has a solution. Let

0 1
4= 20
and
-2 0]
C_[O =21

Then A is nonderogatory with minimum polynomial x*—2 which is irréducible
over 1/3.

RoTH [8; p. 465] has shown that the equation AX—XA=C has a solution
if and only if the matrices A XI—IX AT and (4 XI—IX AT |C) have the same rank
where the augmented matrix uses the columns of C in order. Recall that 4 X B
is the direct product of 4 and B and that (4 | C) is the matrix obtained by augment-
ing the matrix 4 with the matrix C. But

0 1 -2 0
2 0 0 -2

& .
AXI—-TXA R
0-1 2 0

has rank 2 and
el 3022500 3

2 D 0=2 0
-1 0 0 1 O
| 0-1 2 0 -2
has rank 2 also. Therefore AX—XA=C has a solution by Roth’s result. In this
case, A is nonderogatory and C is nonsingular as desired.

(AXI-IXAT|C) =
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