On (m, n)-ideals in associative rings
By S. LAJOS and F. SZASZ

1. Introduction

We introduce in this paper the following generalizations of the concepts of
ideals in rings: the notion of (m, n)-ideal, which is a generalization of one-sided
(left or right) ideals and it contains, as a particular case, the notion of bi-ideal due
to R. A. Goop and D. R. HUGHES [3] for semigroups, and due to the authors [17]
for rings; the concept of (m, n)-quasi-ideal which is a generalization of the con-
cept of quasi-ideal due to O. STEINFIELD; the concept of i*-ideal and k-ideal, the
latter is a generalization of the concept of two-sided ideal.

Let us point out that (m, n)-ideals, (m, n)-quasi-ideals, i*-ideals, and k-ideals
were before introduced and investigated by the first author (see [6], [8], [12], [15]).
For i*-ideals, see also R. BAER [2].

For the necessary background notions used throughout this paper, we refer
to N. JacossoN [4], S. Lajos [6], N. H. McCoy [19], and F. SzAsz [23].

By a ring we mean an associative ring. Throughout this paper 4 always denotes
an associative ring.

For the additive subgroups B and C of an associative ring 4 let the product
BC denote the additive subgroup of the additive group A* of A4, generated by all
the product bc with b€ B and c€C. Let us remark that this complex multiplication
of the additive subgroups is again associative, i.e. the relation

B(CD) = (BC)D

holds for arbitrary additive subgroups B, C,D of A*. Let furthermore S'=§
and S"=8""'S§ for an arbitrary subring S of A4 (S° is defined as an operator
element such that S°4A=A45%=A4). I always denotes the ring of rational integers
and thus /X, for an arbitrary non-empty subset X of A4, denotes the additive sub-
group of A* generated by X.

In Section 2 we develop the fundamentals of the theory of (m, n)-ideals of
associative rings, First we assert some important properties of (m, n)-ideals in rings.
Furthermore, Theorem 2.4 gives a sufficient condition for a product BC, where
B is an (m, n)-ideal and C is an additive subgroup of 4*, to be again an (m, n)-
ideal of 4. In the same section we introduce the n-ideals of a ring, and we show in
Theorem 2.7 that every /r-ideal is an (1, 1)-ideal and conversely. More generally,
our Theorem 2.9 asserts that an additive subgroup of A* is a n-ideal of A4 if and
only if it is an (m, n)-ideal of A4 for certain non-negative integers m and n. Theorem
2.10 gives another sufficient condition for a product BC to be an (m, n)-ideal,
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provided that B is an (m, 0)-ideal and C is a (0, n)-ideal of the ring A. Corollary
2.16 states that i*-ideals and k-ideals coincide if the ring 4 is commutative. Finally,
in Proposition 2.17 we point out that a ring 4 contains no proper (m, n)-ideals
if and only if it is a divison ring.

In Section 3 we discuss (m, n)-ideals of rings with minimum condition on sub-
rings. Thus our Theorem 3.1 states that in the case m, n=2 a ring 4 with minimum
condition on subrings contains either a proper (1, k)-ideal or else a proper (k, 1)-
ideal. Corollary 3.2 is the application of this result to finite rings.

In Section 4 we define the (m, n)-quasi-ideals of rings and investigate them.
First we assert several fundamental properties. Then, in Theorem 4.2, we show
that every (m, n)-quasi-ideal is an (m, n)-ideal of the ring. Theorem 4.4 asserts that
in any ring with a distributive lattice of subrings, a subring is an (m, n)-quasi-ideal
if and only if it is the intersection of an (m, 0)-ideal and a (0, n)-ideal of the ring.

In Section 5 we prove that in a von Neumann regular ring 4 every (m, n)-ideal
is an (m, n)-quasi-ideal and conversely. Corollary 5.6 states that every i*-ideal of
a von Neumann regular ring A4 is a two-sided ideal of A.

2. (m, n)-ideals in associative rings

Definition 2.1. Let A be an associative ring, S a subring of 4 and m, n non-
negative integers. We say that S is an (m, n)-ideal of A if S™"AS"C S.

The present authors [17] defined the notion of (1, 1)-ideal of rings under the
name ““bi-ideal” (cf. also for semigroups R. A. Goop and D. R. HUGHES [3]).

It is easy to prove the following statements concerning (m, n)-ideals of rings.

a) The intersection of any two (m, n)-ideals of a ring 4 is again an (m, n)-
ideal of A.

b) A divison ring has no proper (m, n)-ideals.

¢) The power S* of an (m, n)-ideal S is again an (m, n)-ideal, where k is an
.arbitrary positive integer.

Let B be a non-empty subset of the ring 4. Then the smallest (m, n)-ideal of
A containing B is called the (m, n)-ideal of A generated by B and denoted by {B},, .-

d) It is clear that

{BYm,m = IB+IB*+...+ IB"*"+ IB"AB".
e) If B is a subring of a ring 4 then
{B}(m,n) = B+B"AB".

f) The principal (m, n)-ideal of a ring 4 generated by the element a of 4 is
the following:
{a}(mnﬂ} o Ia+!aa+"'+la-+n+lanl4a"-

g) The principal (m, n)-ideal of 4 generated by an idempotent element e is

eA, if m#=0, n=0;
{e}mm =1€de, if m#=0, n#0;
Ade, if m=0, n=0.
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Theorem 2.2. Let A be a ring, S a subring of A and T an (m, n)-ideal of A. Then
the intersection S(\T is an (m, n)-ideal of S.

PrOOF. The intersection S T obviously is a subring of S. We show that
(SNTY*SSNT) S SNT.
Since T is an (m, n)-ideal of 4, we have
(SNT)"S(SNT)* S T.
On the other hand, § is a subring of 4. Hence
(SNT)"S(SNT)Y S S.
Therefore ST is an (m, n)-ideal of S.

Corollary 2.3. Let B be an (m, n)-ideal, C a (p, q)-ideal of a ring A. Then the
intersection B(\C is a (p, q)-ideal of the ring B and an (m, n)-ideal of the ring C.

Theorem 2.4. Let A be a ring, B an (m, n)-ideal of A and C an additive subgroup
of A* satisfying either BCS B or CBZ B. Then both the products BC and CB
are (m, n)-ideals of the ring A.

PROOF. Assume, for instance, BCS B. Then the product BC is an additive
subgroup of A by the definition of BC. Furthermore we have

(BC)(BC) € B-BC < BC,
thus the product BC is a subring of 4. On the other hand,
(BC)"A(BC)" = B"AB"'(BC) < BC,

whence BC is an (m, n)-ideal of the ring A.
It can similarly be proved that the product CB is also an (m, n)-ideal of the
ring A.

Corollary 2.5. Let m, n be positive integers, A a ring, S an (m, n)-ideal of A
and s€S. Then the products sS and Ss are (m, n)-ideals of A.

Definition 2.6. A subring S, of a ring A is said to be artainable if there exists
a sequence S, S,, ..., S,-; of subrings of 4 such that

Sn(::.:Su-l g“‘g Slg SO= S

holds, where S; is a one-sided (left or right) ideal of S;_, (i=1, 2, ..., n).

To every chain of such subrings of 4 we can associate a product = of the letters
! and r whose i-th factor is / or r according to the fact that S; is contained in S,_,
as a left or right ideal, respectively (i=1,2, ...,n). If S; is a two-sided ideal of
S;_1, then any of / and r can be chosen. Furthermore, a subring S of A is called
a m-ideal, if it is attainable by a subring chain to which the product = is associated.
In the product n let m and n be the numbers of the factors r and /, respectively.

We are going to prove the following result.
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Theorem 2.7. For an additive subgroup S of a ring A the following statements
are pairwise equivalent:
(i) Sis an Ir-ideal of A.
(i1) S is an rl-ideal of A.
(ii1) S is an (1, 1)-ideal of A.

ProOF. Suppose that S is an /r-ideal of a ring A. Then there exists a subring
L of A such that SSLE A4, SLSS, and ALS L. Hence

SUSC SALGSLE S,

that is, S is an (1, 1)-ideal of A, indeed.
Conversely, let S be an (I, 1)-ideal of the ring A, that is,

SAS S S.
Then we have
S(S+AS) = S*+SASC S+S=S.

It follows that S is a right ideal of the left ideal S+ A4S of 4. Consequently, S is
an /Ir-ideal of A.
The proof of the left-right dual statement is analogous.

Corollary 2.8. An additive subgroup S of a ring A is a n-ideal of A if and only
if Sis an r™i™ideal of A.

This follows at once from the equivalence of the conditions (i), (ii) in
Theorem 2.7.

Now we are ready to prove the following result.

Theorem 2.9. An additive subgroup S of a ring A is a n-ideal of A if and only
f S is an (m, n)-ideal of A.

ProoF. By the preceding Corollary 2.8 it suffices to verify our statement for
r™["-ideals instead of =m-ideals. Let S be an r™/"ideal of a ring 4. Then § is an
attainable subring of A4, that is, there exist subrings L,,L,,...,L,_, and
Ry, Ry, ..., R, of A such that the following relations hold:

S=L,S L1 S.ELER,E..ERE R, =4,
RiR_ SR, RLSL, L_,L,CL
B2 v =L 2 . 0k
This yields at once
STAS" = LJALY S LY~ (RyA) LY S LY~'R, L] € LY *(R,RYL, S LY *R, 5 &
€..E (LyRu-DL3 & (RyR,- )L E R, L, S
€ RLLYL}™ € Li(L LY E...E L, =S,

therefore S is an (m, n)-ideal of the ring A, indeed.

Conversely, let us suppose that § is an (m, n)-ideal of a ring 4. Then, by the
property e), the (p, g)-ideal of 4 generated by S is S+ SPA4S5% Now it is easy to
see, that S, ;) is a left ideal of S, x- (k=1, ...,n), and Sy, is a right ideal of
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Su-1,m (=1, ...,m). Hence the subrings L,=S, L, ;=8 a-1)s --+s L1=S(m,1)>
R,,= S0 Ru-1=Sm-1,00s ---» Ri=38q,0 satisfy the above conditions. Thus S
is an r™/"-ideal of the ring 4, which completes the proof of Theorem 2.9.

Theorem 2.10. Let m, n be positive integers, B an (m, 0)-ideal and C a (0, n)-
ideal of a ring satisfyving the condition BC=CB. Then the product BC is an (m, n)-
ideal of A.

ProoF. Obviously, the condition BC=CB Yyields
(BC)* = BC* < BC,
thus the product BC is a subring of 4. On the other hand, we have
(BC)"A(BC)" = B"(C™AB")C" S (B™A)C" S BC,
consequently BC is an (m, n)-ideal of A, indeed.

Remark 2.11. In the particular case m=n=1 the assumption BC=CB is
superfluous. Namely, if L is a left ideal and R is a right ideal of a ring A, then the
products LR and RL are (1, 1)-ideals of A. (Moreover, LR is a two-sided ideal
of A)

Definition 2.12. A two-sided ideal of a two-sided ideal of a ring 4 will be called
an i%-ideal of A. By an i*-ideal we mean a two-sided ideal of an arbitrary i*~'-ideal
of A, where k is a positive integer (k=2).

Remark 2.13. The i*-ideals for k=2,3,4, ... are called also accessible sub-
rings. Furthermore, R. BAER [2] calls these subrings “metaideals of finite index”.

Definition 2.14. The subring S of a ring A4 is called a k-ideal of A, if § is an
(m, n)-ideal of A for every m,n such that m+n=k.

Remark 2.15. It is clear that a subring S of a commutative ring 4 is a k-ideal
of A4 if and only if the condition
SAS S

holds. We observe that the concept of the k-ideal is a generalization of the concept
of two-sided ideal.

Corollary 2.16. A subring S of a commutative ring A is an i*-ideal of A if and
only if it is a k-ideal of A.

Proor. This follows at once from our Theorem 2.9.

Proposition 2.17. A ring A contains no proper (m, n)-ideal if and only if it is
a division ring.

ProoOF. The sufficiency is obvious. The necessity proof is the following. For
every element a< A4 the subrings a4 and Aa are (m, n)-ideals of A. Therefore

ad = Aa = A,

which implies that 4 is a division ring.
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3. (m, n)-ideals in rings with minimum cordition on subrings

As it is well known, the rings with minimum condition on subrings have been
studied by V. I. SNEIDMULLER [21].

Next we prove the following result.

Theorem 3.1. Let A be a ring with minimum condition on subrings. If A contains
a proper (m, n)-ideal with m=2 and n=2, then A contains also a proper (1, k)-
ideal or a proper (k, 1)-ideal for some k=2.

PrOOF. Let m, denote the smallest positive integer for which A4 contains a
proper (m,, n)-ideal, and n, the smallest positive integer for which 4 contains
a proper (m, ny)-ideal. Then, by our assumptions, m, n, m,,n;=2. We show that
either my=n or n,=m holds. Suppose that, in contrary, we have both of m,>n
and n,>m. Then, by m,=m, we obtain n,=m=m,>n, which is a contradic-
tion with respect to the definition of n,.

Thus we may assume, for instance, that 2=m,=n. Furthermore, let S be
a proper (m,, n)-ideal of the ring A. Now we define the following sequence of subrings
of A:

B, = S™AS", B,.,=BMmAB' (i=1,2,..).

We can verify that BfC B;. It is easy to see that
B,2B,2 B;=2... and BMAB!C S.
Now the minimum condition on subrings of 4 implies
B, =By =Biyg=.cm B
for a fixed positive integer j. Then we have

B = B™M AB",
whence it follows at once
B™ AB"~™ B™ AB" = BAB".
Therefore we obtain
BMAB"~™*1 = BARB"

as well. Postmultiplying this equality by B™~!, we arrive

B AR ARl ok BAR s BT,
Finally we obtain
B = BAB*t*™~,

In other words, the subring B of A4 is an (1, k)-ideal of 4 with k=n-+m, —1.
One can prove in a similar way, that in the case of n,=m there exists a proper
(k. 1)-ideal of the ring A.

Corollary 3.2. If a finite ring A contains a proper (m, n)-ideal with m=2 an
n=2, then A contains also a proper (1, k)-ideal, or else a proper (k, 1)-ideal of A.
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4. (m, n)- quasi-ideals of rings

Definition 4.1. A subring S of a ring 4 will be called an (m, n)-quasi-ideal of
A if the inclusion
S"ANAS"S S

holds, where m, n are non-negative integers (S° is an operator element not con-
tained in 4 and such that S°A=AS"=4).

It is easy to prove the following properties of (m, n)-quasi-ideals:

a) The intersection of a set of (m, n)-quasi-ideals of a ring 4 is again an (m, n)-
quasi-ideal of A.

b) A division ring has no proper (m, n)-quasi-ideal.

¢) Let B be a subset of a ring 4. Then the (m, n)-quasi-ideal of A generated
by B, i.e., the smallest (m, n)-quasi-ideal of A4 containing B is

IB+IB*+...+IB*+(IB"AN IAB"),
where k=max (m, n).
d) If S is a subring of a ring A, then the (m, n)-quasi-ideal of 4 generated by
Sis
S+(S"ANAS").
e) The principal (m, n)-quasi-ideal generated by the element a of a ring A4 is

la+1a®+...+ Ia*+(a™AN Aa"),
where k=max (m, n).
f) The principal (m, n)-quasi-ideal generated by an idempotent element e of
A is

Ae if m=0, n=0;
e€"ANAe" ={eANAe if m=0, n=0;
eA if m=0, n=0.

Theorem 4.2. Every (m, n)-quasi-ideal of a ring A is an (m, n)-ideal of A.

PrOOF. Let 4 be a ring and S an (m, n)-quasi-ideal of A. Since we have
Sm"AS"C S™A and S™AS"C AS", we obtain

S™AS" C S"ANAS*C S,
that is, S is an (m, n)-ideal of the ring A.

Remark 4.3. The concept of (1, I)-quasi-ideal was introduced by O. STEINFELD
[22] under the name *‘quasi-ideal”. He showed that a subset of a semigroup is a
quasi-ideal if and only if it is the intersection of a left ideal and a right ideal. The
corresponding problem for associative rings is yet open. It has been answered for
non-associative rings in the negative. (Cf. M. SADIQ ZiA, Studies in ring theory,
Dissertation, L. E6tvos University, Budapest, 1975.)

Now we prove the following

Theorem 4.4. Assume that the subrings of a ring A constitute a distributive lattice
with respect to addition and intersection. Then a subring of the ring A is an (m, n)-
quasi-ideal of A if and only if it is the intersection of an (m,0)-ideal and a (0, n)-
ideal of A.
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PrOOF. Let 4 be a ring with distributive subring lattice, let B and C be an
(m, 0)-ideal and a (0, n)-ideal of A, respectively. Then we have B"AZ B and
AC"S C, whence
(BNCY"ANA(BNC)" S BNC,

and since the common part of subrings is again a subring, we obtain that the inter-
section BN C is an (m, n)-quasi-ideal of A.

Conversely, suppose that S is an (m, n)-quasi-ideal of A. Then we have
S"AMNAS"S S. We prove that

S = {S}m.0 {S}o.n

provided that the subring lattice of A is distributive. By the property e) of Section
2, we have
{S}(M,ﬂ) - S+SMA,
and ;
{S}(u.“) - S‘i‘AS".
The assumed distributivity of the subring lattice yields
(S+S™"A)N(S+AS™) = S+(S"ANAS™) = S,

as we stated.
5. (m, n)-ideals in von Neumann regular rings

Definition 5.1. A ring A is called regular (in the sense of J. vOoN NEUMANN), if
to every element @ of A there exists an element x in A4 such that axa=a.

Theorem 5.2. In a von Neumann regular ring A every (m, n)-ideal S is an (m, n)-
quasi-ideal of A and conversely.

PrOOF. Let A be a von Neumann regular ring. We show that
S*AS* = S"4NAS*
if Sis an (m, n)-ideal of 4. From the proof of Theorem 4.2 we know that S™AS"S
© S™AMAS". Conversely, the regularity criterion of L. KovAcs [5] implies
S"TANAS" S (S"A)(AS") S S™AS".

Corollary 5.3. In a von Neumann regular ring A every bi-ideal of A is a quasi-
ideal of A (and conversely).

For this corollary, see S. LaJos [7].

In what follows we need the following well known lemma of V. A.
ANDRUNAKIEVIC [1].

Lemma 5.4. Suppose that B is an ideal of a ring A and C is an ideal of the ring B.
Let C* be the ideal of A generated by C. Then

(CPEC

A consequence of Lemma 5.4 reads as follows.
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Corollary 5.5. If every two-sided ideal of a ring A is idempotent then every i*-
ideal of A is a two-sided ideal of A.

Proor. The assumption and Lemma 5.4 imply
(CPESCECT
and (C*)*=C", thatis, C=C" holds, which completes the proof of Corollary 5.5.

Corollary 5.6. In a von Neumann regular ring A every i*-ideal is a two-sided
ideal of A.

Proor. Evidently, every one-sided (left or right) ideal of a von Neumann
regular ring is idempotent. Thus Corollary 5.5 implies Corollary 5.6.%)
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