Notes on matrix-valued stationary stochastic processes I

By J. KORMOS and Gy. TERDIK (Debrecen)

1. Spectral representation

1.0. The spectral representation of the matrix-valued stationary stochastic process (m. st. p.) is given in this study. The m. st. p. — in quadratic case — is defined by T. Balogh in [1]. Here the "matrix-valued random variable" denotes a $p \times q$ -type matrix the elements of which are complex random variables. The values of

$$p$$
 and q are $1, 2, 3, ... (< \infty); 1, 2, 3, ...$

respectively. The discrete m. st. p. will be examined when the values of p and qare arbitrarily chosen constants. Specifically it means

— a p-dimension vector $(p \ge 1; q=1)$

— a $p \times p$ -type quadratic matrix (p=q)

— a $p \times q$ -type rectangle matrix $(p \neq q; q < \infty)$

— a ribbon-matrix $(p \ge 1; q = +\infty)$ valued discrete process.

1.1. M_p denotes the set of the $p \times p$ -type quadratic matrices with complex elements.

 $\mathcal{M}_p^{p \times q}$ denotes the set of the $p \times q$ -type matrix-valued random variables, the elements of which have got variance, if $q = \infty$ the (1.1) is required too. If $\xi \in \mathcal{M}_{2}^{p \times q}$ then $E\xi$ denotes the expectation matrix, that is the matrix of the expectations of the elements. For every $\xi, \eta \in \mathcal{M}_2^{p \times q}$ there are their covariance matrix

$$\operatorname{cov}(\xi, \eta) = \langle \xi - E\xi, \eta - E\eta \rangle = E(\xi - E\xi) \{ \eta - E\eta \}^* \in M_p$$

(* denotes, as usual the conjugate of the transpose of matrix.) The

$$\{\xi_n | \xi_n \in \mathcal{M}_2^{p \times q}, \ E\xi_n = 0, \ n = 0, \pm 1, \pm 2, \ldots\} = \{\xi_n\}_{-\infty}^{+\infty}$$

is m. st. p. if

$$\operatorname{cov}(\xi_n, \xi_m) = \Gamma(n-m)$$

for every n, m.

The $\{\xi_n\}_{-\infty}^{\infty}$ m. st. p. is a curve in the $\mathcal{M}_2^{p\times q}$ Q.H. space. The concept of Q.H. — Quasi Hilbert — space is given by B. GYIRES in [2].

(The inner product is in $\mathcal{M}_1^{p \times q}$: $\langle \xi, \eta \rangle = E \xi \eta^*$). For $\xi \in \mathcal{M}_2^{p \times q}$ the ξ^i denotes the vector-valued random variable determined by the *i*-th row of the matrix, thus $\xi = [\xi^i]_{i=1}^p$.

If $q = \infty$ then ξ^i is an infinite-dimensional row vector, and the

$$(1.1) E\xi^{i}\xi^{i*} < \infty$$

condition is required.

1.2. Let us denote the Q. H. space generated by m. st. p. $\{\xi_n\}_{-\infty}^{\infty}$ and the Hilbert space generated by row vectors of this process with

$$Q_{\infty} = Q(\{\xi_n\}_{-\infty}^{\infty}), \quad v_{\infty} = v(\{\xi_n^i (i=1, 2, ..., p\})_{-\infty}^{\infty})$$

respectively.

1.1. Lemma. The elements of the Q_{∞} Q. H. space are built by exactly those row vectors which are the elements of the v_{∞} Hilbert space.

The state of 1.1. lemma follows obviously from the constructions of Q_{∞} and v_{∞} spaces.

Now we can define an U unitary operator on the $\{\underline{\xi}_n^i, i=1, 2, ..., p\}_{-\infty}^{\infty}$ subset of \underline{v}_{∞} ,

$$U\xi_n^i=\xi_{n+1}^i.$$

This U unitary operator based on 4.1. lemma of [3]. (p. 14) can be extended over v_{∞} and it will be unitary, too. After that let V by definition

$$V\xi = [U\xi^i]_{i=1}^p, \quad \xi \in Q_\infty$$

an unitary operator on Q_{∞} Q. H. space. Properties of V are:

a)
$$V\xi_n = V^{n+1}\xi_0 = \xi_{n+1}$$

b)
$$V = [U] = \left[\int_{a}^{2\pi} e^{i\lambda} d\underline{F}(\lambda) \right]$$

(see 109 theorem of [4]).

The $\{\xi_n\}_{-\infty}^{\infty}$ m. st. p. can be represented by

(1.2)
$$\zeta_n = V^n \zeta_0 = \left[\int_0^{2\pi} e^{in\lambda} d\left(E(\lambda) \underline{\zeta}_0^j \right) \right]_{j=1}^p = \int_0^{2\pi} e^{in\lambda} dZ(\lambda)$$

where $Z(\lambda) = [E(\lambda) \, \underline{\zeta}_0^j]_{j=1}^p \in \mathcal{M}_2^{p \times q}$ is an orthogonal stochastical measure defined on the interval $[0, 2\pi]$ having the properties

a) σ-additivity

b) for
$$0 \le \lambda_1 < \lambda_2 < \lambda_3 < \lambda_4 \le 2\pi$$

$$\langle Z(\lambda_2) - Z(\lambda_1), Z(\lambda_4) - Z(\lambda_3) \rangle = 0 (\in M_n).$$

After (1.2) spectral representation of the m. st. p. we can construct the Herglotz-representation of the $\Gamma(\cdot)$ covariance function:

(1.3)
$$\Gamma(n) = \langle \xi_k, \xi_{k+n} \rangle = \int_0^{2\pi} e^{in\lambda} dF(\lambda)$$

where $F(\lambda) = \langle Z(\lambda), Z(\lambda) \rangle$ is a matrix-valued function uniquely determined, non-negative definite, Hermitian-simmetric, monotonically non-decreasing, of bounded variation in its elements and defined on the interval $[0, 2\pi]$ reffered to as spectral distribution function of the m. st. p. $\{\xi_n\}_{-\infty}^{\infty}$

Bibliography

- [1] T. BALOGH, Matrix-Valued Stochastical Processes Publ. Math. (Debrecen) 8 (1961), p. 368—378.
 [2] B. GYIRES, Über die Spuren der verallgemeinerten Toeplizschen Matrizes Publ. Math. (Debrecen) 8 (1961), p. 93—116.
- [3] Yu. A. Rozanov, Stationary Random Processes, San Francisco—Cambridge—London (1967).
 [4] F. Riesz—B. Sz.-Nagy, Lecons d'analyse fonctionnelle, Budapest 1953.

(Received Ferbuary 1, 1976.)