Some extended Hermite—Fejér interpolation processes and their convergence

By V. KUMAR (Lucknow)

1. P. Szász [3] introduced an interpolation formula what he calls extended Hermite—Fejér interpolation. According to him for given n+m distinct points

$$(1.1) x_1, x_2, ..., x_n; \xi_1, \xi_2, ..., \xi_m,$$

there exists a unique polynomial S(x) of degree $\leq 2n+m-1$ satisfying the following conditions:

(1.2)
$$S(x_k) = f(x_k), \quad S'(x_k) = 0, \quad k = 1, 2, ..., n, \\ S(\xi_j) = f(\xi_j), \qquad j = 1, 2, ..., m.$$

Szász himself constructed interpolatory polynomials when $m=1, \xi_1=1$ and x_k 's are the zeros of $P_n(x)$, nth Legendre polynomial or $P_n^{(1/2,-1/2)}(x)$, nth Jacobi polynomial and proved the convergence for any continuous function f(x).

Further SAXENA [4] has investigated the convergence in the case, when m=1,

 $\xi_1 = -1$ and x_k 's are the zeros of $P_n^{(-1/2, 1/2)}(x)$, nth Jacobi polynomial.

In 1965 Merli [2] constructed polynomials when m=1, $\xi_1=0$ and x_k 's are zeros of $T_n(x)$, nth Tchebycheff polynomial of the first kind, n even, and proved the convergence to f(x), which is given by

$$f(x) = c + x^2 \Phi(x)$$

where C is any constant and $\Phi(x)$ is continuous function in [-1, 1]. Later Fontanella [1] proved the Merli's theorem for the function f(x), where f(x)= $=c+|x|^{\alpha}\Phi(x), \ \alpha>0.$

The case when m=2, $\xi_1=1 \& \xi_2=-1$ has also been studied by Szász [5]. Now it is interesting to consider the following cases:

- i) When m=2, $\xi_1=1$ and $\xi_2=0$; ii) When m=2, $\xi_1=-1$ and $\xi_2=0$;

and

- iii) When m=3, $\xi_1=1$, $\xi_2=-1$ and $\xi_3=0$.
- **2.** Case i) When m=2, $\xi_1=1$ and $\xi_2=0$.

The interpolation polynomials $R_n(f, x)$ of degree $\leq 2n+1$ satisfying the properties

(2.1)
$$\begin{cases} R_n(f,1) = f(1) & R_n(f,0) = 0 \\ R_n(f,x_k) = f(x_k) & R'_n(f,x_k) = 0, \quad k = 1, 2, ..., n \end{cases}$$

286 V. Kumar

is given by

(2.2)
$$R_{n}(f, x) = f(1) \frac{W_{n}^{2}(x)}{W_{n}^{2}(1)} x + \sum_{k=1}^{n} f(x_{k}) \frac{x(1-x)}{x_{k}(1-x_{k})} \left[1 - \left\{ \frac{1-2x_{k}}{x_{k}(1-x_{k})} + \frac{W_{n}''(x_{k})}{W_{n}'(x_{k})} \right\} (x-x_{k}) \right] l_{k}^{2}(x),$$
 where

(2.3)
$$\begin{cases} W_n(x) = \prod_{k=1}^n (x - x_k), \\ l_k(x) = \frac{W_n(x)}{W'_n(x_k)(x - x_k)}, \quad k = 1, 2, ..., n. \end{cases}$$

Theorem 1. Let $f(x)=c+|x|^{\alpha}\Phi(x)$, where c is any constant, $\alpha \ge 2$, $\Phi(x)$ is continuous function in [-1,1] and x_k 's are the zeros of $P_n^{(1/2,-1/2)}(x)$, nth Jacobi polynomial. Then the sequence of polynomials $\{R_n(f,x)\}$ given by (2.2), converges uniformly to f(x) in [-1,1].

The polynomial $P_n^{(1/2,-1/2)}(x)$ is identical with

(2.4)
$$W_n(x) = \text{const.} \left[\frac{\sin(2n+1)\Theta/2}{\sin\Theta/2} \right]_{x=\cos\Theta}$$

having the zeros

$$x_k = \cos \frac{2k\Pi}{2n+1}, \quad k = 1, 2, ..., n.$$

This polynomial $W_n(x)$ satisfies the differential equation

$$(1-x^2)W_n''(x)-(1+2x)W_n'(x)+n(n+1)W_n(x)=0$$

which reduces (2.2) as

$$R_n(f,x) = f(1) \frac{W_n^2(x)}{(2n+1)^2} x + \sum_{k=1}^n f(x_k) \frac{x(1-x)(2x_k - x_k^3 - x)}{x_k^2(1-x_k^2)(1-x_k)} l_k^2(x).$$

In particular for $f(x) = |x|^{\alpha} \Phi(x)$, $\alpha \ge 2$, we have

$$(2.5) R_n(f,x) = \Phi(1) \frac{W_n^2(x)}{(2n+1)^2} x + \sum_{k=1}^n \Phi(x_k) |x_k|^{\alpha-2} \frac{x(1-x)(2x_k - x_k^3 - x)}{(1+x_k)(1-x_k)} l_k^2(x).$$

Now a quasi Hermite—Fejér interpolation process of degree $\leq 2n$, satisfying the conditions:

$$R_n^*(f, 1) = f(1), \quad R_n^*(f, x_k) = f(x_k), \quad R_n^{*'}(f, x_k) = 0 \qquad k = 1, 2, ..., n,$$

is given by

$$(2.6) \quad R_n^*(f,x) = f(1) \frac{W_n^2(x)}{W_n^2(1)} + \sum_{k=1}^n f(x_k) \frac{1-x}{1-x_k} \left[1 + \left\{ \frac{1}{1-x_k} - \frac{W_n''(x_k)}{\overline{W}_n'(x_k)} \right\} (x-x_n) \right] l_k^2(x).$$

¹⁾ Without no loss of generality, now we will always take C=0.

Using (2.4) and $f(x) = |x|^{\alpha} \Phi(x)$, $\alpha \ge 2$ we have at once

$$(2.7) R_n^*(f,x) = \Phi(1) \frac{W_n^2(x)}{(2n+1)^2} + \sum_{k=1}^n \Phi(x_k) \frac{1-x}{1-x_k} |x_k|^\alpha \left(\frac{1-xx_k}{1-x_k^2}\right) l_k^2(x).$$

Subtracting (2.5) from (2.7), we obtain

$$R_n^*(f,x) - R_n(f,x) = \Phi(1) \frac{(1-x)W_n^2(x)}{(2n+1)^2} + \sum_{k=1}^n \Phi(x_k) \frac{|x_k|^{\alpha-2}(1-x)}{(1-x_k)^2(1+x_k)W_n^2(x_k)}.$$

Since $0 \le (1-x)W_n^2(x) \le 2^2$ and $|\Phi(x)| \le M$ in [-1, 1], it follows that for $\alpha \ge 2$

$$|R_n^*(f,x)-R_n(f,x)|<\frac{2M}{(2n+1)^2}+2M\sum_{k=1}^n\frac{1}{(1-x_k^2)(1+x_k)W_n^2(x_k)}.$$

But3)

$$\sum_{k=1}^{n} \frac{1}{(1-x_k^2)(1-x_k)W_n^{\prime 2}(x_k)} = \frac{2n}{(2n+1)^2}$$

therefore,

(2.8)
$$\lim_{n\to\infty} R_n(f, x) = \lim_{n\to\infty} R_n^*(f, x).$$

Further using the well known result of Szász [3] we have

(2.9)
$$\lim R_n^*(f, x) = f(x), \quad -1 \le x \le 1$$

for $f(x)=|x|^{\alpha}\Phi(x)$, continuous in [-1,1]⁴). Combining (2.8) and (2.9) we have the theorem 1.

Theorem 2. Let $f(x)=c+|x|^{\alpha}\Phi(x)$ where C is any constant and $\Phi(x)$ continuous in [-1, 1]. Then for the sequence of polynomials (2.2) constructed on the zeros of $P_n(x)$, nth Legendre polynomial, the relation

$$R_n(f, x) \rightarrow f(x)$$
 for $-1 < x \le 1$

holds.

The proof of Theorem 2 runs exactly on the same lines as the proof of theorem 1. So we omit the details.

3. Case ii) when m=2, $\zeta_1=-1$ and $\zeta_2=0$. The interpolation polynomial $H_n(f,x)$ of degree $\leq 2n+1$ with the properties:

$$H_n(f, -1) = f(-1)$$
 $H_n(f, 0) = 0$
 $H'_n(f, x_k) = f(x_k)$ $H'_n(f, x_k) = 0$, $k = 1, 2, ..., n$

is given by

(3.1)
$$H_n(f,x) =$$

$$= f(-1) \frac{W_n^2(x)}{W_n^2(-1)} x + \sum_{k=1}^n f(x_k) \frac{x(1+x)}{x_k(1+x_k)} \left[1 - \left\{ \frac{1+2x_k}{x_k(1+x_k)} + \frac{W_n''(x_k)}{W_n'(x_n)} \right\} (x-x_k) \right] l_k^2(x)$$
where $W_n(x)$ and $l_k(x)$ are given by (2.3).

²⁾ See Szász [3]

³⁾ See Szász [3]

⁴⁾ See for example holds G. VITAL, G. SAUSONE, Moderna teoria delle funzioni di variabile reale. Bologna (1952).

288 V. Kumar

Theorem 3. If $\Phi(x)$ is continuous in [-1,1] and $f(x)=C+|x|^{\alpha}\Phi(x)$, $\alpha \ge 2$ and x_k 's denote the zeros of Jacobi polynomial $P_n^{(-1/2,1/2)}(x)$, then the sequence of polynomials (3.1) converges uniformly to f(x) in [-1,1]. The polynomial $P_n^{(-1/2,1/2)}(x)$ is identical with

(3.2)
$$W_n(x) = \operatorname{const} \frac{\cos \frac{2n+1}{2} \Theta}{\cos \Theta/2}, \quad x = \cos \Theta$$

having the zeros

$$x_k = \cos \frac{2k-1}{2n+1} \Pi, \quad k = 1, 2, ..., n.$$

The differential equation satisfied by $W_n(x)$ in (3.2) is

$$(1-x^2)W_n''(x) + (1-2x)W_n'(x) + n(n+1)W_n(x) = 0$$

which reduces (3.1) for $+(x) = |x|^{\alpha} \Phi(x)$ as

$$H_n(f,x) = \Phi(-1) \frac{W_n^2(x)}{-(2n+1)^2} x + \sum_{k=1}^n \Phi(x_k) \frac{x(1+x)x_k |x_k|^{\alpha-2}}{(1+x_k)^2(1-x_k)} (2x_k - x_k^3 - x) l_k^2(x).$$

Now a quasi Hermite—Fejér polynomial satisfying the condition:

$$H_n^*(f,-1) = f(-1), \quad H_n^*(f,x_k) = 0, \quad H_n^{*'}(f,x_k) = 0, \quad k = 1, 2, ..., n,$$

is given by

$$H_n^*(f,x) = f(-1) \frac{W_n^2(x)}{W_n^2(-1)} + \sum_{k=1}^n f(x_k) \frac{1+x}{1+x_k} \left[1 - \left\{ \frac{1}{1+x_k} + \frac{W_n''(x_k)}{W_n'(x_k)} \right\} (x-x_k) \right] l_k^2(x).$$

For $W_n(x)$ given by (3.2) and $f(x) = |x|^{\alpha} \Phi(x)$, $\alpha \ge 2$ we have

(3.4)
$$H_n^*(f,x) = \Phi(-1) \frac{W_n^2(x)}{(2n+1)^2} + \sum_{k=1}^n \Phi(x_k) |x_k|^{\alpha} \frac{(1+x)(1-xx_k)}{(1-x_k)^2(1+x_k)} l_k^2(x).$$

SAXENA [4] proved that

(3.5)
$$H_n^*(f, x) \to f(x), -1 \le x \le 1$$

as $n \to \infty$ when f(x) is continuous in [-1, 1]. Equation (3.3) and (3.4) yield

$$H_n^*(f,x) - H_n(f,x) = \Phi(-1) \frac{(1+x)W_n^2(x)}{(2n+1)^2} + \sum_{k=1}^n \Phi(x_k)|x_k|^{\alpha-2} \frac{(1+x)}{(1+x_k)(1-x_k^2)W_n'^2(x_k)}.$$

Since $|\Phi(x)| \leq M$ for $-1 \leq x \leq 1$, $\alpha \geq 2$ and $\alpha \geq 3$

$$0 < (1+x)W_n^2(x) \le 2$$
, $\sum_{k=1}^n \frac{1}{(1-x_k^2)(1+x_k)W_n'^2(x_k)} = \frac{2n}{(2n+1)^2}$.

⁵⁾ See SAXENA [4].

Hence

$$(3.6) H_n(f,x) \to H_n^*(f,x) as n \to \infty.$$

Equation (3.5) and (3.6) together completes the proof of theorem 3.

4. Case iii), when m=3, $\xi_1=1$, $\xi_2=-1$ and $\xi_3=0$. The interpolation polynomial $Q_n(f,x)$ of degree $\leq 2n+2$ with the properties:

(4.1)
$$Q_n(f, 1) = f(1), \qquad Q_n(f, 0) = 0, \quad Q_n(f, -1) = f(-1)$$
$$Q_n(f, x_k) = f(x_k), \quad Q'_n(f, x_k) = 0, \quad k = 1, 2, ..., n,$$

is given by

$$Q_{n}(f, x) = f(1) \frac{W_{n}^{2}(x)}{W_{n}^{2}(1)} \cdot \frac{(1+x)x}{2} + f(-1) \frac{W_{n}^{2}(x)}{W_{n}^{2}(-1)} \cdot \frac{(x-1)x}{2} + \sum_{k=1}^{n} f(x_{k}) \frac{x(1-x^{2})}{x_{k}(1-x_{k}^{2})} \left[1 - \left\{ \frac{1}{x_{k}} - \frac{2x_{k}}{1-x_{k}^{2}} + \frac{W_{n}''(x_{k})}{W_{n}'(x_{k})} \right\} (x-x_{k}) \right] l_{k}^{2}(x),$$

where $l_k(x)$ and $W_n(x)$ are given by (2.3).

Theorem 4. Let $f(x) = C + |x|^{\alpha} \Phi(x)$, where C is any constant, $\alpha \ge 2$, $\Phi(x)$ continuous function in [-1, 1] and x_k 's be the zeros of $U_n(x)$, nth Tchebycheff polynomial of second kind, n even. Then the sequence of polynomials (4.2) converges uniformly to f(x) in [-1, 1].

The differential equation satisfied by $W_n(x) = U_n(x)$ is

$$(1-x^2)U_n''(x)-3xU_n'(x)+n(n+2)U_n(x)=0$$

from which we at once have

$$Q_n(f, x) = f(1) \frac{U_n^2(x)(1+x)x}{2(n+1)^2} + f(-1) \frac{U_n^2(x)(x-1)x}{2(n+1)^2} + \sum_{k=1}^n f(x_k) \frac{x(1-x^2)(2x_k - x_k^3 - x)}{x_k^2(1-x_k^2)^2} l_k^2(x).$$

Taking $f(x) = |x|^{\alpha} \Phi(x)$, $\alpha \ge 2$, we have

(4.3)
$$Q_n(f,x) = \Phi(1) \frac{U_n^2(x)}{2(n+1)^2} x(1+x) + \Phi(-1) \frac{U_n^2(x)}{2(n+1)^2} x(x-1) + \sum_{k=1}^n \Phi(x_k) |x_k|^{\alpha-2} \frac{x(1-x^2)(2x_k-x_k^3-x)}{(1-x_k^2)} l_k^2(x).$$

Now the quasi-Hermite—Fejér interpolation polynomial $Q_n^*(f, x)$ satisfying the properties

$$Q_n^*(f, 1) = f(1), \quad Q_n^*(f, -1) = l(-1)$$

 $Q_n^*(f, x_k) = f(x_k), \quad Q_n^{*'}(f, x_k) = 0, \quad k = 1, 2, ..., n,$

is given by

$$Q_n^*(f,x) = f(1) \frac{1+x}{2} \frac{W_n^2(x)}{W_n^2(1)} + f(-1) \frac{1-x}{2} \frac{W_n^2(x)}{W_n^2(-1)} + \sum_{k=1}^n f(x_k) \frac{1-x^2}{1-x_k 2} \left[1 + \left\{ \frac{2x_k}{1-x_k 2} - \frac{W_n''(x_k)}{W_n'(x_k)} \right\} (x-x_k) \right] l_k^2(x).$$

Which for $W_n(x) = U_n(x) \& f(x) = |x|^{\alpha} \Phi(x)$, $\alpha \ge 2$ takes the from

$$Q_n^*(f,x) = \Phi(1) \frac{1+x}{2} \frac{U_n^2(x)}{(n+1)^2} + \Phi(-1) \frac{1-x}{2} \frac{U_n^2(x)}{(n+1)^2} + \sum_{k=1}^n \Phi(x_k) |x_k|^{\alpha} \frac{(1-x)^2 (1-xx_k)}{(1-x_k^2)^2} l_k^2(x).$$

From (4.3) and (4.4), we get

$$Q_n^*(f,x) - Q_n(f,x) = \left[\Phi(1) - \Phi(-1)\right] \frac{1 - x^2}{2(n+1)^2} U_n^2(x) + \sum_{k=1}^n \Phi(x_k) |x_k|^{\alpha - 2} \frac{(1 - x^2) U_n^2(x)}{(n+1)^2}.$$

Further we have

$$|Q_n^*(f,x)-Q_n(f,x)|<|\Phi(1)-\Phi(-1)|\frac{(1-x^2)U_n^2(x)}{2(n+1)^2}+\sum_{k=1}^n|\Phi(x_k)||x_k|^{\alpha-2}\frac{(1-x^2)U_n^2(x)}{(n+1)^2}.$$

Since $|\Phi(x)| \leq M$, $\alpha \geq 2$, $0 < (1-x^2)U_n^2(x) < 1$ for $-1 \leq x \leq 1$, therefore

(4.5)
$$\lim_{n\to\infty} Q_n(f,x) = \lim_{n\to\infty} Q_n^*(f,x).$$

But theorem of Szász [5] gives

$$(4.6) Q_n^*(f,x) \to f(x) as n \to \infty.$$

From (4.5) and (4.6) we have the theorem 4.

Theorem 5. If $f(x)=C+|x|^{\alpha}\Phi(x)$ where C is any constant, $\alpha \ge 2$ and $\Phi(x)$ is continuous in [-1,1], then the sequence of polynomials (4.2) constructed on the zeros of $P_n(x)$, nth Legendre polynomial converges uniformly to f(x) in [-1,1].

The proof of this theorem runs exactly on the same lines as the proof of the theorem 5. So we omit the details.

Acknowledgement: I am grateful to Dr. K. K. MATHUR for his help and guidance.

References

- [1] F. Fontanela, Su una formula di interpolazione di tipo misto di Lagrange—Hermite. Riv. Mat. Univ. Parma (2) 7 (1966), 151—156.
- [2] L. Merli, Le formule di interpolazione de tipo misto di Lagrange e Hermite per la classe delle funzione del lipo $f(x) = C + x^2 \Phi(x)$. Riv. Mat. Univ. Parma (2) 6 (1965), 17—21.
- [3] P. Szász, The extended Hermite—Fejér interpolation formula with application to the theory of generalised almost step parabolas, Publ. Math. (Debrecen) 11 (1964), 85—100.
- [4] R. B. SAXENA, On the convergence and divergence behaviour of Hermite—Fejér and extended Hermite—Fejer interpolations. Rendiconti del Seminario Matematico (Univ. e Politec. di Torino) 27 (1967—68), 228—238.
- [5] P. Szász, On quasi-Hermite—Fejér interpolation, Acta. Math. Acad. Sci. Hungaricae. 10 (1959), 413—439.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY, LUCKNOW (INDIA).

(Received February 16, 1976.)