Note on imbedding theorems

By J. NEMETH (Szeged)

Introduction
Let @(x)=¢,(x), (p=1) be a nonnegative increasing function on [0, =) with
the following properties:

@(x)
xP

(1) qo_)(cxl? and

¥ A8 X -+oo,

The set of the measurable functions f(x) on (a, b) (0=a<b=<) for which
b

[ @(|f(x))) dx<= will be denoted by ¢(L(a,b))

If f(x)€@(L(a,b)) then the “modulus of continuity of f(x) with respect
to ¢ will be defined by

b—h
0y(0; f) = w,(3; f; a, b) = sup &( [ (If(x+h)—f(x)])dx,
0=h=d S

where @(x) denotes the inverse function of ¢(x).

If p(x)=x? (p=1) then ¢(L(a, b)) and w,(d; f) will be denoted, as usually,
by L?(a,b) and w,(d; f).

If given a function ¢(x) and a nondecreasing continuous function @(x) with
w(0)=0, then HY=H2"® will denote the collection of the functions f(x) satisfy-
ing the condition w,(3;f)=0(w(d)).

P. L. UL ANoV proved imbedding theorems in several papers (see for instance
[6] and [7]) Among others he gave condition which assure that a function f(x)€
€L?(0, 1) should belong to another space L*(0, 1) if v=p.

L. LEINDLER generalized these results of Ul’janov in [2] and [3], where he gave,
among others, conditions which assure the transition from an arbitrary collection
¢,(L(0,1)) to ¢,(L(0, 1)) A(L(0, 1)) and ¢,(L(0, 1)) where A(x) is a “slowly in-
creasing’ function.

He e.g. proved the following:

7*
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Theorem A. ([3], Theorem 1.). Let f(x)€@(L(0, 1)), (p(x)=0,(x), p=1) and
let {/,} be a nonnegative monotonic sequence of numbers such that')

S 2 kgy.lm
(1) l:=2|; fl+e — K(’) mt
where?) e=(4[p+1]+2)"%, and let?) A(x)= le% Then
k=1
@) 52 o (L)) imptes seo< oz DAL, 1)

We gave in [5] for certain functions @(J) necessary and sufficient conditions
for the imbedding
Hy @< o(L(0, 1)) A(L(0, 1)).

G. GammNAsArROV proved similar theorems to those of Ul’janov concerning
to interval [0, =) instead of [0, 1]. For example he proved the following:

Theorem B. ([1], Theorem 3.) Let f(x)€LP(0, =), p=1, and let 1=p<v. If

Sn o) [% f] <o, then feL*(0, ).
n=1

In the present paper we prove theorems of similar type to those of L. LEINDLER
([3])) and to our above mentioned result ([5]) concerning to interval [0, =) instead
of [0, 1]; namely we give conditions assuring the transition from ¢,(L(0, =)) to
©,(L(0, =)) A(L(0, =)) and to ¢,(L(0, ==)), furthermore for certain functions @ (d)
we give necessary and sufficient condition for

HP®@ < p(L(0, =)) A(L(0, ==)).
More precisely we prove the following theorems:

Theorem 1. Let f(x)€@(L(0, =)), (p(x)=¢,(x),p=1) and let {i,} be a non-
negative monotonic sequence of numbers such that

@) 32 =koim,

k=m
where e=4([p+1]+2)~', and furthermore let

A(x) = 2‘:%

k=1

1) K and K; denote either absolute constans or constans depending on certain functions and
numbers which are not necessary to specify; K(x; f) and Ki(«, §, ...) denote positive constans depen-
ding only on the indicated parameters.

) [{] denotes the integer part of y.

%) ¥ where a and b are not necessarily integers, means a sum over all integers between a and b.
a
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Z20foGr)) <=
implies

@ fx)€ (L0, =)) A(L(O, ==)).

Theorem 2. Ser @(x)=¢,(x) and Y(x)=¢,(x) (p,v=1) and suppose that
there are k(o, ) and K(¢, ) constants for which

(5) v(x) = Ko, ¥), if 0=x= k(o)

Let {¢x} be a nonnegative nondecreasing sequence of numbers with

Then

i kg _K(a)

and denote by ¢(x) the continuous function which is linear between n and n+ 1, further-
more @(n)=g,. Suppose that f(x)€f(L(0, =)), then

55 bl -
implies .
(7) F(x)EY(L(O, =)o (L(0, =)).

Theorem 3. Let w(d) be a given nondecreasing continuous function with
w(0)=0, for which there exists the limit

_al3)

(8) fig — s

and let {4,} be a nonnegative monotonic sequence of numbers satisfying Ayp=Ki,
for any k. Then a necessary and sufficient condition that

©) HEO < p(L(0, =) A(L (O, =)
is that
w n® [w [%]]

where A(x) means the same as in Theorem 1.
We remark that condition (5) may not be omitted. (See for example the case
e(¥)=1, Yy(x)=x% @(x)=x* and

0, if 0=x=2
f(x) = l

V}, if 2=x)
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We also remark that in the case @(x)=x?, y(x)=x" Theorem 2 includes
Theorem B; furthermore in the case ¢(x)=x, A(n)=¢@(n) Theorem 1 includes
Theorem 1 of G. GAIMNASAROV [1].

Furthermore we mention that the proofs of the theorems and lemmas run
similarly to those of the old ones which were proved by P. L. Ul’janov, L. Leindler,
G. Gajmnasarov and me; therefore we detail only those parts wich differ from the
earlier ones.

§ 1. Lemmas

Lemma 1. ([7], Lemma 13). Let A(u) be a nonnegative nondecreasing function
on [0, ) such that A(u*)=KA(u) for any uc|0, =) and let B(u) be a nonnegative
Sunction on [0, 1]. Then

le(u)A(B(u)) du <o
finph‘es y
1
of B(u) A (%] du <,

Lemma 2. (1], Lemma 5). If f(x)€L(0, =) and F(z) is a nonnegative non-
increasing function equidistributed with |f(x)|, that is

mes {x: x€[0, =), |f(x)| > y} = mes {z: z€[0, =), F(z) > y},

then
sup f If(x)| dx =f F(z)dz forany 0 = o =oo;
e 4 ;

Sfurthermore if o<-<> and

sup [ If)dx = [|f(x)ldx,
5= ol o

then
2x
sup  [1f)|dx = [ F(z)dz.

Ec[0, =)—E,
|El=a . E

Lemma 3. ([3], Lemma 3). Let ¢(x)=¢,(x). If u(x) and v(x) are nonnegative
measurable functions on the interval I, then we have

f u(x)v(x)dx f u(x)(v(x))dx
i = op

fu(x) dx . fu (x)dx

i

I

Lemma 4. ([4], Theorem; Inequality (8)).
If a,=0 and 7,>0, then
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Lemma 5. If f(x)€@(L(0, =)) and

e
n

go,,(r)=nf fwdu, 0=t<o, n=12,..,
then
4 1
f o(If()—e,(1)))dt = K(9) @ [% [;;f)]-

0
PRrOOF of Lemma 5.

1 1
- e 4=

[ o(Wf@-o.0)dt = [ o(|n [ O du=n [ fau)dr =

0 0

1 1

= ftp[nlff_f(t)—f(u+l)]du|]dtéfcp[n f1f(t)—f(u+r)|du]dr= I.

Next we use Lemma 3. and have

1

1=2 [ n(f o(1f0)~f+0) du)dr =

= 2’:1f[f(p([f(t)-—f(u+f)[)dl)du =29 [m,[%,f]],

which proves the statement of Lemma 5.

Lemma 6. Let f(x)€@(L(0, =)) and the functions qo,,(t).swne as in Lemma
5 and ]

pitd

VO =¥,0 =Y =n [ " f(w)du, k+-:- =t<k+

v
k+;

v+1
n ]

where v=0,1, ....p=1; k=0.1.2. ... n=1.2. ..... Then

[ ollo0-v )= Koo [o02:))
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PROOF. An easy calculation gives that

s k+1

[ olle—v@har=3 [ e(los-v®))dr =
0 =k

Lo et it
=22 [ elS sedu—n f ) dul} dt =
> ofl f £y du— ff(u)du|}d:
=22 g { [+ ) —r] anfar =

K+ 222 421
é.g: ; / { f “+;l;]--f(u) du}d.':l.
k4= 1
By Lemma 3 we have :
= 2f [J oo L))
Hv;l
o zré; ::“{ ¢ [ f[u+ -rl?] —f ) ]a‘u =

]du = 2’<p[w,[%;f]],

whence the statement of Lemma 6 follows.

Lemma 7. Let f(x)€@(L(0, =)) and let Y (t) be the same function as in Lemma 6.
Then

- 2’f¢[|f[u+%]—f(u)

ftp(lf(f)—¢(r)f) dt = K(QO)tp[ww [-rl?f]]

ProOF. Applying the Lemma 5 and Lemma 6 and the fact
¢(a+b) = K(@)(¢(@)+0¢(b) (a=0, b=0),

we obtain the statement of Lemma 7.
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Lemma 8. If f(x)€@(L(0, <)), then
1 1 n n
—, f1=K(p)p |— F(z)dz— | F(z2)d 5
ww[n f]= (w)tp[ntp[N[&f (z)dz lf (2) 2])]

where @(x) denotes the inverse function of ¢(x) and F(z) has the same meaning as
in Lemma 2.
PROOF. Let

g2
n

a) = ()=n [ |f@w)|du=a,, =0,

k+=
if 1€ [k+%-_--:-=k+%l], R T o V0T i AT R

Denote by b,=b,=b,>... the nonincreasing rearrangement of the sequence

-if;;é;? v+1
f¢[a(t+%]-a(r)]d: =k§; :-_: £T¢[¢[1+%]—a(:)]d;=

n
o

n=1
=2 2 ¢ (lay,v41— x| — = —@(bo—by).

k=0 v=0

From this point the proof runs on the same line as in Lemma 6 in [3].
The following three lemmas may be proved similarly as Lemma 7, Lemma 8
and Lemma 9 in [3], so the proofs of these lemmas we omit.

Lemma 9. If f(x)€¢(L(0, <)), then
FQ) = K@){[ o(/®)) dx+:§_:¢(2‘¢(w¢(2“:f)))}

for any n=1, where F(z) has the same meaning as in Lemma 2.
Lemma 10. If f(x)€¢,(L(0, =)) and R=2**', then

=

1
Rn
f o(F(x))dx = '1[ tp(F(x))dx+K(qp)go[w¢[%;f]]
for any n=1. i

Lemma 11. If f(x)€@(L(0, =) (p(x)=¢,(x)) and e=(4[p+1]+2)"%, then

i
n

.sf ¢(F(x))dx = %@{g k=te [w,[%; f]]+ f tp(F(x)]dx}

Jor any n=1.
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§ 2. Proofs of the theorems

Since the proof of Theorem 1, applying the modified lemmas, runs similarly
to that of Theorem 1 in [3], we omit it.

PROOF of Theorem 2. Let F(x) be the same function as in Lemma 2. Since for
any nonnegative function y(«) on [0, =)

[ 1) dx = [ 7(Feo)dx

0

(see [8] p. 54), we have

[ v e(f@N dx = [ w(F)o(F@) dx,
0 0
furthermore, by (5),

f Y(F(x))e(F(x))dx = f "’(ﬁ"g o(F(x)o(F(x))dx =

= K o(FO)K(, ¥) [ o(Fw)dx = K, [ o(f(0))dx,
i | 0

therefore, in order to prove (7) it is sufficient to show that

. " [ U (F)e(F(x)) dx <ee.

The proof of (2.1) runs on the same line as in Theorem 2 of [3].

PROOF of Theorem 3. The sufficiency of (10) has been proved by Theorem 1.
The necessity of (10) will be proved indirectly. Suppose that
(3.1

sl
but (9) holds.

Then we can construct a function f(x) conducing to a contradiction. The con-
struction of this function is similar to that of LEINDLER in [2], made in the case
0 (x)=x".

We define f;(x) as follows:

IIMg

Ky i X=FT0 N
=10 i x=0, x¢|[3.=), x=2-,
inear on [277*, 3.2-%=8] [3.2"*8 2-%]
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wmt2y e 0,23 (o (o L)) o(o(zLe))]) Fiee we shom

that fo(x)e Hy®. Let
(3.2) RE(2*-2 25 L k&2
Then

o 3h
f @(lfot+h)—fo()]) dt = [f + f](9(|fo(r+h)—fo(')|)d’ =L+
0 0 3k

We have that

2-K

I, = K(¢) f o(|fo®))dx = K f o(|fox))) dx =

2-n

=k 3 [ o(f)dx = K, z o(e)2-"1 =

n=K g-n-1

£ 3 [0 [o3)-ofo ()] - oo ) = eoton

Next we prove, that for any k:

o FrofFeleelel)) s o)

To prove (3.3) we mention that, by (8) and (3.1),

o(3)

h
a0
follows, namely, if hm o) ————=g=1, then we should have

ofolote) = o (3

which by Jg=K;Ax, would imply the contrary of (3.1).

By (3.4) we may assume that there exists a positive number « such that
O<a=1 and that for any n=>n,

3.5) w[%] = iﬁa-w[%].
Hence, by ¢@(kx)=kP@(x) (k=1), we have

i oo o) < e o)
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o o falld]serela )]

Since for any k<1, 6(kx)~_—~»';/l—cq3(x) we have by (3.7)

o0 slerefole)) = wleolo(d)

and consequently

(.9) Zo(zofolz)) = 370 (2oloz).

Using the following property of ¢(x): ¢(kx)=ke¢(x) for any k<1, we obtain

T bl = 3efaslenl )

Hence we get

o B olaololgi)]) = 2o o oo )

which implies (3.3), since O0<x<1. Having (3.3) we can estimate /,. Since

fo(t+m) —fo(0)] = h2"*2(0,+ 0n-1)s

27*1=1=s2"" (I1=n=k-1),

if

thus
a”

f (folt+ o) di = 5 o(fla+m o) di =

= K(o) E:Z""(p [—;T e.] = Kl(tp)ng’:"-‘"rp [—;—; (fT’ (2"40 (w[zl—]]]] =

= Ky(9)o [w [%]] = K (@) @(w(h)).

Summing up we get
Jo(x)E Hy.

fo(x)& @(L(0, =)) A(L(0, =)).

ado)

n=1

Finally we prove that

By (3.1)

(3.10) - as N oo,
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Using (3.10), and that Z,,=K;4,, furthermore that for any N there exists an

integer N, such that
[ —1] n_x,"’[ (5 ]

an easy computation gives that

(3.11) §A(2’)¢(9,)2‘"—-w as e,

Indeed, if 2*=N,, we have
ZN'}.,‘k“tp [w(l]] =2 QD Akt 'qo [(O[l]]—ZKltp [m[l]]
K=1 k k=1 ! k N,
=23 k'l[ [ [i]]—zx , [1]]] =
] & “K o|\w k lfp @ F =

= 22" S Ak-le w[%] —ZKIA(2")<p[w[%]]]+K2§

(1)

52.2‘“‘(;)[ [2,,'_1]] b ).kk“—2K1A(2“)qa[w[%]]]+1(2z_—f

k=2""141

s é' Kﬂo[ 2" 1]]& =gh !+1/kk 1 ZKIAQ“)(P[ [2" ”+K3

= K ‘;: (p[ [2‘]]'; 2 1+1z,Jc“—A(Z“)(p[i:o[il‘;]]]+!(3 =

= K, [Z (p[w 2i]] (A(Z‘)—A(Z“l))~/l(2")tp[w[%}]]-h&'s =

- 5 ool )+ el o

i
= X, z; A2 ()27 "' +K;,

which proves (3.11) by (3.10).
It is clear that for any m

-n
1 o 2

[ olsna(t)ax=3 [ oyreona(L)ax=

1/2m+1 n=0 g-n-1

g-n

= 3 AQ) S olhDdx =K, 3 A@)o(en2™
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and thus, by (3.11) we get
1
1
(3.12) I qo(|fo(x)|)/l[;] dx = .

(1]
Since Agx:=Kig, we have
(3.13) A(n*)e Ky A(n)

thus, by (3.12), applying Lemma 1, we obtain
1

(3.14) J o(lfe))A(fo(x))) = ==

0

Using (3.13) and the properties of the function ¢(x), we have

(3.15) Ap(x)) = Ky A(x),
whence by (3.14) and (3.15)

oo 1

[ o(fe)) A(f®)) = [ oI/ A(fo(2)]) = =

0 0

follows, that is,
So(x)& @(L(0, ==)) A(L(0, ==)).
The proof is completed.
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