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Resultants of cyclotomic polynomials

By STÉPHANE LOUBOUTIN (Caen)

Abstract. We give a simple proof of a result of Apostol and Diederichsen.

Notations. When x and y are positive integers we let (x, y) be the
greatest common divisor of x and y. We set ζx = exp(2iπ/x), we let
φ(x) be the number of positive integers less than or equal to x which
are prime to x, and we let ρ(Fm, Fn) denote the resultant of any two
cyclotomic polynomials Fm(X) and Fn(X) with m > n ≥ 1. Finally,
two algebraic integers α and β are called equivalent when there exists an
algebraic unit ε such that α = εβ. Note that two positive rational integers
which are equivalent are equal (since any rational number which is an
algebraic integer is a rational integer.)

Theorem (Tom M. Apostol and F.-E. Diederichsen). If m >
n > 1 then

ρ(Fm, Fn) =
{

pφ(n) if n divides m and m/n is a power of a prime p,

1 otherwise.

We first explain our simple idea which is easy to remember. In princi-
ple, a reader who understands this simple idea will be able to reconstruct
our proof of the Theorem. We start from

(∗) ρ(Fm, Fn) =
m∏

u=1
(m,u)=1

n∏
v=1

(n,v)=1

(1− ζmv−nu
mn )

and note that ρ(Fm, Fn) is a positive integer. Thus, if ρ(Fm, Fn) is equi-
valent to some positive integer N then ρ(Fm, Fn) = N . Now, 1 − ζy

x

Mathematics Subject Classification: Primary 11C08; Secondary 11A99.
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(with (x, y) = 1) is most often equivalent to 1 (i.e. is an algebraic unit),
except when x is a power of some prime p, in which case (1 − ζy

x)φ(x) is
equivalent to p. Hence, we will first determine under which condition on
m and n there may exist u and v in (∗) such that mn/(mn, mv− nu) is a
power of some prime. Then we will count the u’s and v’s in (∗) for which
mn/(mn,mv − nu) is a power of some prime.

Lemma 1. Let x and y be coprime positive integers. Then, 1− ζy
x is

associated to 1 − ζx. Moreover, 1 − ζx is associated to 1, except if x is a
power of some prime p, in which case (1− ζx)φ(x) is associated to p.

Proof. For the first point, we let z be such that yz ≡ 1 (mod x)

and note that (1 − ζy
x)/(1 − ζx) =

y−1∑
k=0

ζk
x and its inverse (1 − ζx)/(1 −

ζy
x) = (1 − ζyz

x )/(1 − ζy
x) =

z−1∑
k=0

ζky
x are both algebraic integers. Second,

let N ≥ 2 be an integer. Since
∏

1 6=d|N
Fd(X) = (XN − 1)/(X − 1), then

N =
∏

1 6=d|N
Fd(1). Hence, FN (1) = p if N is a power of some prime p,

and FN (1) = 1 otherwise. The proof of Lemma 1 is now straightforward.
¤

Lemma 2. Let m > n > 1 and u and v be positive integers with
(m,u) = 1 and (n, v) = 1. Then, mn/(mn,mv− nu) is the power of some
prime p if and only if there exits a ≥ 1 such that m = npa and N divides
pav−u, where N is defined by means of n = Npb with (p,N) = 1. In that
case, mn/(mn,mv − nu) = pa+b and there are exactly φ(m)φ(n)/φ(N)
couples (u, v) with 1 ≤ u ≤ m, (m,u) = 1, 1 ≤ v ≤ n, (n, v) = 1 such that
N divides pav − u.

Proof. Set d = (m,n), define M > N ≥ 1 by means of m = dM and
n = dN and assume throughout this proof that (m,u) = (n, v) = 1. Then
mn/(mn,mv−nu) = MN(d/(d,Mv−Nu)). Hence, if mn/(mn,mv−nu)
is a power of some prime p then N = 1, i.e. n divides m, and M is a power
of p, i.e. there exists a ≥ 1 such that m = npa. Conversely, if m = npa

and n = pbN with (p, N) = 1 and a ≥ 1, then mn/(mn,mv − nu) =
pa(n/(n, pav − u)) = pa+b(N/(N, pav − u)) is a power of p if and only if
N divides pav − u, in which case mn/(mn,mv − nu) = pa+b. Finally, the
last point of Lemma 2 is easily proved once we note that for each u prime
to n we have φ(pa+b) = φ(n)/φ(N) possible choices for v. ¤
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Proof of the Theorem. If m is not equal to n times some power
of a prime, then according to the Lemmas all the terms which appear in
(∗) are associated to 1, hence ρ(Fm, Fn) is associated to 1, which implies
ρ(Fm, Fn) = 1. Now, assume that there exists some prime p such that m =
npa. Then, according to the Lemmas there are exactly φ(m)φ(n)/φ(N)
terms in (∗) which are not associated to 1, each of which is associated to
1− ζpa+b , so that their product is associated to pk with
k = φ(m)φ(n)/φ(N)φ(pa+b) = φ(n). Hence, ρ(Fm, Fn) is associated to
pφ(n), which implies ρ(Fm, Fn) = pφ(n). ¤
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