Correction and remark to my paper "Characterizations of the Baer radical class by almost nilpotent rings"

By RICHARD WIEGANDT (Budapest)

I shall use the terminology and notations of [2].

1. Almost nilpotent rings may be defined in three non-equivalent ways.

Definition A (G. A. P. HEYMAN): A ring A is almost nilpotent, if every nonzero ideal of A strictly contains a power of A.

Definition B [1]: A ring A is almost nilpotent, if every proper homomorphic image of A is nilpotent. The prime simple rings are assumed not to be almost nilpotent.

Definition C [2]: A ring is almost nilpotent, if every proper homomorphic image of A is nilpotent. The prime rings are assumed to be almost nilpotent.

Denoting the classes of all almost nilpotent rings given by Definitions A, B and C by L_A , L_B and L_C , respectively, we have obviously the relations $L_A \subseteq L_B$ and $L_B \subseteq L_C$

- 2. Using *Definition A* the subdirectly irreducible almost nilpotent rings are always nilpotent. Hence *all the results of* [2] *are valid*. (The proofs are analogous to those in [2] but somewhat simpler.)
 - 3. Using Definition B we can say the followings:
- i) Theorem 1 of [2] is valid. From line 14 on p. 16 of [2] the proof should be completed as follows:
- $A \in \mathscr{S} \mathbf{R}$, contradicting $0 \neq A \in \mathbf{R}$. Hence $H \in \mathbf{R}$ holds. Since $A \in \mathbf{L}$, the ring A/H is nilpotent and so $A/H \in \mathscr{S} \mathbf{R}$. Further, $A \in \mathbf{R}$ implies $A/H \in \mathscr{S} \mathbf{R} \cap \mathbf{R} = \mathbf{O}$. Hence $H = A \in \mathbf{L}$ which is a contradiction because H, as a prime simple ring, is not almost nilpotent. Thus $\mathbf{Z} \subseteq \mathbf{R}$ is proved.
 - ii) Instead of [2] Theorem 2 one can easily prove
- **Theorem 2***. Let R be a radical class such that $R \cap Z \neq O$. R satisfies condition (L) iff $Z \subseteq R$.
- Correspondingly, in Corollaries 2 and 3 of [2] the adjective "hereditary" must be replaced by condition $\mathbf{R} \cap \mathbf{Z} \neq \mathbf{O}$.
 - 4. Using *Definition C*, as *I* did in [2], we remark the followings:
- i) Theorem 1 of [2] is false (the ring B constructed in the proof is not associative). In fact, let R be the lower radical determined by a single simple ring A with unity. It is easy to see that $\mathbf{R} \cap \mathbf{L} \neq \mathbf{O}$ and $\mathbf{Z} \not\subseteq \mathbf{R}$ hold and in addition R satisfies condition (L).
- ii) I was not able to prove or disprove the assertion of [2] Theorem 2. To prove it, it is sufficient to have an affirmative answer for the following

Problem (T. L. JENKINS): Let H be a prime simple ring without unity. Does there exist a subdirectly irreducible ring B with heart H such that $B/H \neq 0$ is nilpotent?

Nevertheless, Theorem 2* holds also in the terms of Definition C.

References

L. C. A. VAN LEEUWEN and G. A. P. HEYMAN, A radical determined by a class of almost nilpotent rings, Acta Math. Acad. Sci. Hungar. 26 (1975), 259—262.

[2] R. Wiegandt, Characterizations of the Baer lower radical class by almost nilpotent rings, *Publ. Math. (Debrecen)* 23 (1976), 15—17.

(Received September 13, 1977.)