On a numbertheoretical series

By A. ROTKIEWICZ (Warsaw) and R. WASÉN (Uppsala)

A composite number n is called a *pseudoprime* if $n \mid 2^n - 2$. Let P(x) denote the number of pseudoprimes $\leq x$ and P_n the n-th pseudoprime. In 1949 P. Erdős stated that

(1)
$$c_1 \log x < P(x) < c_2 x / (\log x)^k$$
, for every k and $x > x_0(k)$.

K. SZYMICZEK [10] proved, using the following result of P. ERDŐS (see [2])

(2)
$$P(x) < 2x \exp\left\{-\frac{1}{3}(\log x)^{1/4}\right\} \quad \text{if} \quad x > x_0$$

that $1/P_n < 2/n(\log n)^{4/3}$. Therefore $\sum_{n=1}^{\infty} 1/P_n < \sum_{n=1}^{\infty} 2/n(\log n)^{4/3}$ and since the last series is convergent $\sum_{n=1}^{\infty} 1/P_n$ is also convergent. A. ROTKIEWICZ [9] proved that

(3)
$$P(x) > \frac{5}{8} \log_2 x$$
 for $x \ge 1905$, where $\log_2 x$ denotes

the logarithm at the base 2. This result is much stronger than the theorem of K. SZYMICZEK [10]:

(4)
$$P(x) > \frac{1}{4} \{ \log x + \log \log x + \dots + \underbrace{\log \log \dots \log x}_{k \text{ times}} \}$$

ROTKIEWICZ ([7], problem 47) asked whether the series $\sum 1/\log P_n$ is convergent. A. MĄKOWSKI [5] proved that the series $\sum 1/\log P_n(c)$ is divergent, where $P_n(c)$ denotes the *n*-th pseudoprime with respect to c (n is a pseudoprime with respect to c if n is composite and $n|c^n-c$). He used the fact established by CIPOLLA [1] that the number $(c^{2p}-1)/(c^2-1)$ is a pseudoprime with respect to c if p is an odd prime such that $p \nmid c^2-1$ and that the series $\sum 1/p$, where p runs over the primes, is divergent.

First we note that the divergence of $\sum_{n=1}^{\infty} 1/\log P_n$ follows from the estimation $P(x) > c \log x$. Indeed, if we put $x = P_n$ we get

$$(5) P(P_n) > c \log P_n$$

and since $P(P_n) = n$, by (5)

$$\frac{1}{\log P_n} > c/n$$

and the divergence follows at once from the well-known divergence of the series $\sum_{n=1}^{\infty} 1/n$.

Theorem 1. The series $\sum 1/\log p_n^{(a)}$, where $p_n^{(a)}$ is the n-th pseudoprime of the form ax+b, where (a,b)=1, is divergent.

PROOF. Let a, b be fixed coprime positive integers. Let $P^{(a)}(x)$ denote the number of pseudoprimes $\equiv b \pmod{a}$ and $\leq x$. By theorem 5 of A. ROTKIEWICZ [8] we have that

(6)
$$P^{(a)}(x) \gg \log x/(a^c \log \log x),$$

where c is an absolute constant.

If we put $x=P_n^{(a)}$ in (6) we get

(7)
$$n \gg \log P_n^{(a)} / \log \log P_n^{(a)}$$

and hence $\log \log P_n^{(a)} \ll \log n$. Thus by (7)

(8)
$$\log P_n^{(a)} \ll n (\log \log P_n^{(a)}) \ll n \log n.$$

Hence it follows that

(9)
$$\sum 1/\log P_n^{(a)} \gg \sum 1/n \log n$$

and the divergence of the first series in (9) follows from the well-known divergence of $\sum 1/n \log n$. This completes the proof of Theorem 1.

Theorem 2. If
$$n \ge 7$$
, then
$$e^{\log n + c \sqrt{(\log n)(\log \log n)}} < P_n < e^{\frac{8}{5}n \log 2}$$

where c is an absolute positive constant.

PROOF. In 1955 P. ERDős [4] proved with Knödel's method (see [6]) that,

(10)
$$P(x) < xe^{-c\sqrt{(\log x)(\log\log x)}}$$

where c is an absolute positive constant. Put $x=P_n$, then by (10)

$$(11) P_n > ne^{c\sqrt{(\log P_n)(\log\log P_n)}} > ne^{c\sqrt{(\log n)(\log\log n)}}.$$

This completes the proof of the left side of the inequality. On the other hand by (3) with $x=P_n$, $P_7=1905$,

(12)
$$n > \frac{5}{8} \log_2 P_n \quad \text{if} \quad n \ge 7,$$

and so clearly

(13)
$$e^{\frac{8}{5}n \cdot \log 2} > P_n \quad \text{if} \quad n \ge 7.$$

This completes the proof.

Theorem 3. The series $\sum_{n=1}^{\infty} e^{c\sqrt{(\log P_n)(\log \log P_n)}}/P_n(\log n)^s$ is convergent for s>1 (c is the constant occurring in the Erdős result).

$$P_n > ne^{c\sqrt{(\log P_n)(\log\log P_n)}}$$

hence

$$1/n(\log n)^s > e^{c\sqrt{(\log P_n)(\log\log P_n)}}/P_n(\log n)^s$$

and so the theorem follows from the well-known convergence of the series $\sum_{n=1}^{\infty} 1/(n(\log n)^s)$ for s>1. P. Erdős [4] conjectured that

(14)
$$P(x) > x^{1-\varepsilon}$$
 for every $\varepsilon > 0$ and $x > x_0(\varepsilon)$ and

gave strong reasons for this conjecture.

Theorem 4. From the conjecture of P. Erdős it follows that the series $\sum 1/P_n^{1-\varepsilon}$ is divergent for every $\varepsilon > 0$.

PROOF. Suppose that $\varepsilon > 0$ then by the conjecture of Erdős:

(15)
$$P(x) > x^{1-\varepsilon} \text{ for } x > x_0(\varepsilon).$$

It follows that

(16)
$$n > P_n^{1-\varepsilon} \quad \text{for} \quad n > n_0(\varepsilon)$$

and hence

and it follows that the series $\sum 1/P_n^{1-\varepsilon}$ is divergent. We have seen that the series $\sum 1/\log P_n$ is divergent.

If we could prove that $P(x)\gg(\log x)^k$, then it would follow that the series $\sum 1/(\log P_n)^k$ is divergent. However this result seems hard to get.

Remark. From Theorem 2 it follows that

$$P_n > n^{1+c\sqrt{(\log\log n)/\log n}},$$

where c is an absolute positive constant.

On the other hand from the conjecture of P. Erdős it follows that $P(x) > x^{1-\epsilon}$ for all $\epsilon > 0$ and all $x > x_0(\epsilon)$ and so

$$P_n < n^{\frac{1}{1-\varepsilon}} = n^{1+\frac{\varepsilon}{1-\varepsilon}}$$
 for $n > n_0(\varepsilon)$.

Thus for all $\bar{\epsilon} > 0$, $P_n < n^{1+\bar{\epsilon}}$ if $n > n_0(\bar{\epsilon})$ and hence if Erdős' conjecture is true the following upper and lower bounds of P_n holds provided that n is sufficiently large

(18)
$$n^{1+c\sqrt{(\log\log n)/\log n}} < P_n < n^{1+\tilde{\epsilon}},$$

where c is an absolute positive constant.

References

- [1] M. CIPOLLA, Sui numeri composti P, che verificano la congruenza die Fermat $a^{P-1} \equiv 1 \pmod{P}$, Annali di Matematica 9 (1904), 139—160.
 [2] P. Erdős, Of the converse of Fermat's theorem, Amer. Math. Monthly 56 (1949), 623—624.

[3] P. Erdős, On almost primes, Amer. Math. Monthly 57 (1950), 404—407.

- [4] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. (Debrecen) 4 (1955), 201-206.
- [5] A. MAKOWSKI, On a problem of Rotkiewicz on pseudoprimes, Elem. Math. 29 (1974), 13.
- [6] W. KNÖDEL, Eine obere Schranke für die Anzahl der Carmichaelschen Zahlen kleiner als x, Arch. Math. 4 (1953). 282-284.
- [7] A. ROTKIEWICZ, Pseudoprime numbers and their generalizations, University of Novi Sad, Faculty of Sciences (1972), i+169 pp.

[8] A. ROTKIEWICZ, On some problems of W. Sierpiński, Acta Arith. 21 (1972), 251—259.

- [9] A. ROTKIEWICZ, On the number of pseudoprimes ≤x, Univ. Beograd. Publ. Elektrotehn. Fac. Ser. Mat. Fiz. nr 389 (1972), 43-45.
- [10 K. SZYMICZEK, On pseudoprimes which are products of distinct primes, Amer. Math. Monthly 74 (1967), 35-37.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

DEPARTMENT OF MATHEMATICS AND NATURE, WARSAW UNIVERSITY DIVISION,

15-424 BIAŁYSTOK AND

INSTITUT MITTAG-LEFFLER, S-18 262 DJURSHOLM, SWEDEN

(Received April 15, 1975.)