On a numbertheoretical series

By A. ROTKIEWICZ (Warsaw) and R. WASEN (Uppsala)

A composite number n is called a pseudoprime if n|2"—
Let P(x) denote the number of pseudoprimes =x and P, the n-th pseudo-
prime. In 1949 P. ErDGs stated that

(n ¢, logx = P(x) <= cyx/(log x)*, for every k and x = x,(k).

K. Szymiczex [10] proved, using the following result of P. ERDGOs (see [2])
(2) P(x) < 2xexp {—%(log x4} if x> x,

that 1/P, -:2/n(logn)”3 Therefore ZI/P Z‘2/n(logn)”3 and since the last

series is convergent Z’ 1/P, is also convergent A. ROTKIEWICZ [9] proved that

n=1
(3) P(x):»%loggx for x =1905, where log,x denotes

the logarithm at the base 2. This result is much stronger than the theorem of K.
Szymiczexk [10]:

(4) P(x) :-i{log x+loglogx+ ... +loglog ... log x}
4 S i niuih?

k times

Rotkiewicz ([7], problem 47) asked whether the series >’ 1/log P, is convergent.
A. MAKowskKT [5] proved that the series ' 1/log P,(c) is divergent, where P,(c)
denotes the n-th pseudoprime with respect to ¢ (# is a pseudoprime with respect
to ¢ if n is composite and nlc"—c). He used the fact established by CipoLLA [1] that
the number (¢*”—1)/(c*—1) is a pseudoprime with respect to ¢ if p is an odd prime
such that pfe*—1 and that the series > 1/p, where p runs over the primes, is
divergent.

First we note that the divergence of >’ 1/log P, follows from the estimation
n=1

P(x)=>clogx. Indeed, if we put x=~P, we get
&) P(P,) > clog P,
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and since P(P,)=n, by (5)

log P, =P

and the divergence follows at once from the well-known divergence of the series

b
=1

Theorem 1. The series > 1/logp'®, where p\® is the n-th pseudoprime of the
form ax+b, where (a,b)=1, is divergent.

PrOOF. Let a,b be fixed coprime positive integers. Let P“(x) denote the
number of pseudoprimes =b (mod @) and =x. By theorem 5 of A. ROTKIEWICZ
[8] we have that

(6) P (x) =log x/(a° log log x),
where ¢ is an absolute constant.
If we put x=P\? in (6) we get
(7) n = log P9 /log log P{*
and hence log log P\ <«log n. Thus by (7)
(8) log P\ < n(loglog P{*") < nlog n.
Hence it follows that
9) 2> 1/log P9 = 3 1/nlogn

and the divergence of the first series in (9) follows from the well-known divergence
of > 1/nlogn. This completes the proof of Theorem 1.

Theorem 2. If n=7, then
]
elogn+c|‘(losn}(log logn) — Pn - e—s-ulogE

where ¢ is an absolute positive constant.

PrROOF. In 1955 P. ErDGs [4] proved with Knddel’'s method (see [6]) that,
(10) P(x) = xe—cVUogx)ioglogx)
where ¢ is an absolute positive constant. Put x=/,, then by (10)
(11) P, > necYUogP,XioglogP,) = pec¥ognioglogn)

This completes the proof of the left side of the inequality. On the other hand by
(3) Wlth x:Pn’ P‘.':lgosa

(12) n= %logﬂ P, if n&1T,
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and so clearly
(13) gsmione_ P, if n=1.
This completes the proof.
Theorem 3. The series E@W/Pu(]og n)* is convergent for s=>1
(¢ is the constant ocurring ?:Ithe Erdos result).

Proor. By (11)
Pu = nec ¥(log P, )log log P,)

hence
1/n(log n)* = ecV@oeP,)io1oe?,)/ P, (log n)*

and so the theorem follows from the well-known convergence of the series

S‘ 1/(n(logn)’) for s=1. P. ERDGs [4] conjectured that
n=1

(14) P(x)=x'"* forevery ¢=>0 and x= x4(¢) and
gave strong reasons for this conjecture.

Theorem 4. From the conjecture of P. Erdds it follows that the series > 1/P}~*
is divergent for every &=0.

PrROOF. Suppose that ¢=0 then by the conjecture of Erdds:

(15) Pix)>x" for xo 28
It follows that

(16) n=> Pi~¢ for n = ny(e)
and hence

(17) AP X 1N

and it follows that the series > 1/P)~* is divergent. We have seen that the series
> 1/log P, is divergent.

If we could prove that P(x)=(log x)*, then it would follow that the series
> 1/(log P,)* is divergent. However this result seems hard to get.

Remark. From Theorem 2 it follows that

Pn = n! +ecVloglogm)logn :

where ¢ is an absolute positive constant.
On the other hand from the conjecture of P. Erdds it follows that P(x)=x!"¢
for all ¢=0 and all x=x,(¢) and so

1 4
— 1 4 m—
P,<n-t=n 1-¢ for n=> ny(e).
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Thus for all £=0, P,<n'*? if n=ny(Z) and hence if Erdds’ conjecture is true the
following upper and lower bounds of P, holds provided that n is sufficiently large

(18) nl-i-cl((logto”);'losn < P, < n'+*i,

where ¢ is an absolute positive constant.
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