On measurable solutions of functional equations

By ANTAL JARAI (Debrecen)

Introduction

It is well-known that every homomorphizm of the additive group of real
numbers into itself, being Lebesgue measurable on a compact set with positive
measure is continuous. More generally [see HEwitT and Ross [11], p. 346] every
homomorphizm of a locally compact Hausdorff group into a o-compact or separable
Hausdorff group being left Haar measurable on a compact subset with positive
measure is continuous.

Same regularity properties are valid for other functional equations. E.g. in
KuURrEPA’s papers [17], [18] the similar results are demonstrated for the functional
equations

fx+y)+f(x—y) = 2f(x)+2f(y)
fx+y)+f(x=y) = 2f(x)f ().

and

Results of the same type can be found in HiLLE and PHILLIPS’ book [13] and
IoNESCU—TULCEA’s paper [14]. In his paper [3] BAKER studies the relation between
measurability and continuity for functional equations, in which the domain of
the unknown functions is a locally compact Hausdorff group with left Haar
measure.

In several cases it is enough to show that the measurable solutions of the
functional equation are bounded on a suitable subset and on the basis of this to
draw conclusion by means of theorems concerning Lebesgue integral [see AczEL [1],
AcziL and DARGCzY [2], DarOczy [6] and Lee [20]].

This paper’s results show that the measurable solutions are bounded and
continuous in case of a general type of functional equations.

In the paper we follow FEDERER’s terminology [9] concerning measure theory
but in the first § the necessary definitions are summed up. Detailed discussion of
the facts about topological groups are to be found in HEwitT and Ross’ mono-
graphy [11].

§ 2. presents the main results. In definition 2.1 we describe the notion of the
family of relations uniformly continuous in measure which is related to the con-
cept of absolute continuity of measures. The most general results 2.3, 2.4, 2.5 and
2.6 are based on it. In section 2.7 and 2.8 less general but easily applicable results
are given.

In § 3. sufficient conditions are given for the uniform continuity in measure of



18 Antal Jarai

families of relations. These conditions are connected with the boundedness of the
derivate or a Lipschitz type conditions.

In §4. the main results are applied for some functional equations.

I wish to thank my professor ZoLTAN DARGCZY and my colleagues for support-
ing my work on this paper.

§ 1. Notations and terminology

1.1 Notations. We shall use the notation
A~ B={x: x¢A and x¢ B}.

We shall identify a function or relation with its graph. If f is a relation, dmn f, im f
and f|A will denote the domain, the image and the restriction of f to A, respect-
ively. For each class X we let 2X be the class of all subsets of X. Let R denote the
set of real numbers, and let R" denote the n-dimensional Euclidean space. If a and
b are extended real numbers, let ]a, b, [a, b] and [a, b[ denote the suitable open,
close and half open intervals, respectively.

1.2 Measures and measurable sets. We say that u measures X, or that p is a
measure over X, if and only if X is a set, u:2*¥-[0, =] and

u(A) = 3 p(B) whenever Fc2X, F countable, Ac UZE
BEF
Following Carathéodory, we say that
A is a u measurable set if and only if AcX and

w(T)=u(TNA)+u(T ~ A) whenever TcC X.

With any measure pu over X, and any set YCJX, one associates another measure
v over X by the formula
v(A)=u(YNA) for ACAX.

All u measurable sets are also v measurable, and if Y is a u measurable subset of
X, then for every ACX, A(Y is p measurable if and only if 4 is v measurable.

1.3 Radon measures. By a Radon measure we mean a measure yu, over a locally
compact Hausdorfl space X, with the following three properties:

If K is a compact subset of X, then u(K)=<=-e=.

If V is an open subset of X, then V is u measurable and u(V)=sup {i(K):K
is compact, KcV}.

If A is any subset of X, then

pu(A) = inf {u(V): V is open, ACV}.

We observe, that, in case u is a Radon measure over X, Y is u measurable,
u(Y)<-e and &=0, there exists a compact subset C of Y, so that u(¥Y~C)<eg,
moreover, the measure v over X, defined by the condition v(4)=u(4NY) for
AcC X is a Radon measure over X.
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The most important Radon measures over a locally compact Hausdorff group
are the left Haar measures. If G is a locally compact Hausdorfl group, then we
shall denote an arbitrary but further on fixed left Haar measure over G with 7;
if G=R", then /4 denotes the Lebesgue measure over R".

1.4 Measurable functions. Assuming that u measures X, and Y is a topological
space, we say that f is a u measurable function if and only if f is a function whose
image is contained in Y, whose domain is contained in X, u(X~dmn f)=0, and
for which f~'(V) is u measurable whenever V is an open subset of Y.

The following definition are motivated by BourBaki [4]: Assuming that u
is a Radon measure over a locally compact Hausdorff space X, and Y is a topo-
logical space, we say that f is a p measurable function in the Bourbakian sense
if and only if f is a function whose image is contained in Y, whose domain is con-
tained in X, u(X~dmn f)=0, and for which the following condition is
satisfied:

For every £¢=0 every pu measurable set A with u(4)<< contains a compact
set C so that u(A~C)=eg, Ccdmn f and f|C is continuous.

It is not hard to prove, that if f is a g measurable function in the Bourbakian
sense, then f is u measurable function. By Lusin’s theorem, if Y is a separable
metric space, and u is a Radon measure over a locally compact Hausdorff space
X, then every u measurable function is u measurable in the Bourbakian sense
[see FEDERER [9], 2.3.5 and 2.3.6].

We will say, that f is a pu measurable function over A [ measurable function
over A in the Bourbakian sense] if and only if pu is a measure over X, ACX
and f is a v measurable function [v measurable function in the Bourbakian sense]
where v(B)=u(B(1A) for BcCX.

§ 2. The main results

2.1 Definition. Let p and v be measures on X and Y respectively, and let T
be a set. For every reT let g, XX Y be a relation. We shall say, that the family
of relations g,, 1€ 7T is (u, v)-continuous in measure uniformly in t€T, if for each
¢=>0 there exists a =0 so that AcX and u(A)<dJ imply v(g,(4))=e¢ for
every t€T.

In case confusion is excluded we shall say, that g,, 7€ T is uniformly continuous
in measure. We remark that in the followings we shall always need uniform con-
tinuity of families of relations represented as inverses of functions.

2.2 Remarks. The concept of uniform continuity in measure of a family of
relations is related to the concept of absolute continuity of measures. Indeed, with
the notations used in 2.1, if for every r¢7, ¢! is a function, and

#(A) = sup{v(g(4)): 16 T} whenever A4C X,

than x is a measure over X and g,, 7€ T is uniformly continuous in measure if and
only if the following condition holds:
For every &=0 there exists a 0=0, that 4ACJX,

wu(A) = implies x(A4) = e.
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This condition implies, that »%(4)=0 whenever ACX and u(4)=0, but the
converse is not true without further conditions (See HaLmos [10]). These account
for our use of the notion “uniform continuity in measure’.

2.3 Theorem. Let T, Y and X; (i=1,2,...,n) be sets, v and y; be measures on
Y and X;, respectively, and suppose, that p,(X)<=< (i=1,2,...,n). Further let
DcTXY, and fo:T-R, f;: X;-R (i=1,2,....n), g;: DX, (i=1,2,...,n),,
h:DXR"—=R be functions. Assume, that the following conditions hold:
(1) For every (1, y)eD
fo@] = [h(t, y, fi(&i (8, V), - ful8a(2, 1)) .

(2) The functions |f;| (i=1,2,....n) are p; measurable.
(3) With the notation

g.MW=gy if (L,y)ED and i=1,2,...,n

the families of relations g}, t¢ T are uniformly continuous in measure.
(4) There exists an e=0 so that v(y:(t,y)eD}=¢ for every t<T.
(5) For every k=0 there is a K=0 such that |r;|=k (i=1,2,....,n) and
(t, y)ED implies
1B 0 Py P = K,

Then f, is bounded on T.
Proor. By (4) there exists an >0 so that v{y: (1, y)éD}=¢ for every 1<T.
By (3) there exists a 6=0 for which 4, X; and p;(A4,)<dJ implies v(g;}(A,-))-—:%
for every t€T and i=1,2,...,n As |f]is p; measurable and p;(X;)=<-e=,
B, = {x: x€ X; and |fi(x)| > k}

is a decreasing sequence of measurable sets in & with an empty intersection, also
there exists &, so that
gl Gl = dor 1=1,2,.e0
with the notation
C; = {x: x€ X;, |fi(x)| = k}.

Let ¢ be an element of 7. We will prove that the set

©) 0 &:4(C)

is nonvoid. Since the sets g !(X;~C;, and g;}(C;) are disjoint with union
{y: (¢, y)¢ D}, supposing (6) being empty, we should have

U gii (Xi ~ ) = {y: (1, )€ D}
and hence

E=V [}._Jl gii(X; ~ C.')] = iz; "(gl_.rl (X; ~ Ci)) cad .



On measurable solutions of functional equations 21

a contradiction, consequently (6) is nonvoid. Let y be a member of (6). Then
g,.(»)€C,, hence |fi(g(t »))|=k, consequently by (1) and (5) there exists a
K=0, for which |f,(f)|=K and K does not depend on ¢. This proves, that f
is bounded on 7, and thus the proof is complete.

2.4 Remarks. The theorem 2.3 can be generalized for the case in which the
image of f;is in a metric space Z; metrized by g¢; for i=0, 1, ..., n. The conditions
2.3(3) and 2.3(4) are unchanged, the conditions 2.3(1), 2.3(2) and 2.3(5) are to be
replaced by the followings:

(1) There exists a z,€ Z,, that for every (¢, y)€ D the distance between z, and
fo(t) is not larger than the distance between z, and

h(t, v, fi(@(t, YD)y oos fu(8a(t, 1))

(2) For i=1,2,...,n there exists a z;€Z; for which the real valued func-

tions
b, g gi(zia fa(x))
are u; measurable.

(5) For every k=0 there exists z;€Z; (i=0,1,...,n), and K=0, so that
the distance between z, and A(t, y, z1, ..., z,) is not larger than K whenever
(t,)ED, z{€Z; (i=1,2, ...,n) and the distance between z; and z; not
larger than k.
This general version of the theorem can be proved easily by the way used in
2.3, or using 2.3.

The theorem can often be used in cases if one of u;(X,)=e (i=1,2,...,n)
conditions is not satisfied and |f;| is u; measurable only on a subset A4; of X; with
finite y; measure, yu; being replaced by the measure

vi(B)=p;(BMNA) for BcCX,

and g; by a restriction of g;.
We remark that similar method can be used to prove the upper or lower
boundedness of f,.

2.5 Theorem. Let Z, be a metric space, let Z; (i=1,2, ..., n) be separable
metric spaces, T a metric space, X; (i=1,2,...,n) locally compact metric space
and Y be a set with the discrete metric. Let v be a measure on Y and u; be a Radon
measure on X; (i=1,2,...,n). Suppose, that p(X)<- (i=1,2,...,n) and
DCTXY. Let fo: T=2,, fi: X;—~Z; (1=1,2,....,n), g;: D~X; (i=1,2,...,n),
h: DXZ,XZyX ... X Z,~Z, be functions. Let t, be a fixed element of T, and suppose,
that the following conditions hold:

(1) For every (t,y)eD

Fo@) = h(t, y, (21, V), ..., fu(8a(2s ¥)))-

(2) The functions f;, (i=1,2,...,n) are p; measurable.
(3) With the notation

g MW=g@y if 4y)ED and i=1,2,...,n,

the families of relations g;},t€T are uniformly continuous in measure.
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(4) There exists an £=0 so that
v({y: (1, WEDYN{y: (1o, )ED)) = ¢

Jfor every teT.

(5) For every compact subset C of Z\XZyX...XZ,, h is uniformly continuous
on DXC.

(6) g; is uniformly continuous on D for i=1,2, ..., n.

Then f, is continuous at 1,.

PrOOF. By (4) there exists an £=0 so that
v({v: (6 EDYN{y: (1, 1)EDY) =&
for every t€T. By (3) there exists d=0 for which 4, X; and pu;(4,)=0 implies
v(gil(4)) = % for every t¢T and i=1,2,...,n. By Lusin’s theorem f; is g,

measurable in the Bourbakian sense, hence there exists C; compact subset of X;
for which u;(X;~C)=6 and f;|C; is continuous. Clearly

V(g (X, ~ C)) <2—‘: for t€T and i=1,2,...,n
Let 1T be fixed. We shall prove, that the set
[f_‘|1 g (C ,-)] N (Dl g1, (C .-)]
is nonvoid. If this set were empty, we should have

e = v({y: (1, WED}N{y: 4, y)ED}) =

I

' [[L_J1 i (X, ~ c,.)] u[};']l o7k (X, ~ q_))] 4

= ;é; v(git(X; ~ Ci))+.§; v(gii,(X; ~ C)) = ¢

and thereby a contradiction. Consequently, for every r€7T there exists y<Y for
which (1, y)€ED, (t,, y)ED, gi(t, y)EC; and g;(t,, y)€C; for i=1,2,...,n.
Let x be a positive number and

C =fi(C)X[o(Co) X ... X [, (C,).

Since C is compact, by (5) there exists a f=>0 so that the distance between
h(ty, 5,2, ...,2,) and h(1,», 21, ..., z;) is less than a whenever z;, z;€ f;(C)), and
the distance between ¢ and ¢#,, z, and z{,z, and zj,...,z, and z; is less than f.
Since C; is a compact subset of X; and f; is continuous on C;, so f; is uniformly
continuous on C; and so there exists y=0 for which the distance between f;(x;)
and f;(x]) is less than f whenever x;, x;€C; and the distance between them is
less, than y. By (6) there exists a neighbourhood W of ¢,, that the distance between
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t and 1, is less than f, and the distance between g;(7, y) and g;(#,. v) is less than
y whenever t€W, (1, y)€D and (t,, y)€D.

Let # be an element of W and let’s choose y so, that the condition (7, y)€D,
(ty. Y)ED, g:(t,¥)EC;, g:(t,,y)eC; be satisfied for i=l.2- .0 The for
i=1,2,...,n the distance between fi(g;(1,y)) and f; (g,(r.] ;)) is less, than f,
hence lhe dlstance between

h(f, Y, fl(gl(!9 J'))s seny fn(gn(!9 }')))

h(‘o» ysfl(gl(‘l}! y)}-, -fn(gu(r(l! _}')))

less than a. Accordingly, the distance between f,(f) and f,(#,) is less than « when-
ever 1€ W, thus f; is continuous at #,, and this completes the proof.

and

2.6 Remarks. Theorem 2.5 can be generalized for the case in which Z; is a uni-
form space with the uniformity t; (i=0,1,...,n), T is a topological space, and
X, i1s a locally compact Hausdorff uniform space with the uniformity o;. The con-
ditions 2.5(1), 2.5(3), 2.5(4) are unchanged, the conditions 2.5(2), 2.5(5) and 2.5(6)
are to be replaced by the followings:

(2) The functions f; (i=1, 2, ..., n) are y, measurable in the Bourbakian sense.

(5) If Vy€1, and C is a compact subset of Z,XZ,X...XZ,, then there is a

neighbourhood ¥V of 17, and V€1, (i=1,2, ....,n) such that

(h(E, s 21, -ovs 2), Blley ¥, 2y ..y ZD)EV,

whenever 1€V, (z;,z))€V; (i=1,2,...,n), (t, )ED, (15, ¥)ED (24, ...,2,)EC
il LRy s BDEL

(6) If U,co; (i=1,2,...,n), then there exists a neighbourhood § of t,, such
that 7¢S, (1, y)€D and (t,, y)€D implies

(gi(’a y)! gi(fﬁn ).))E Ui for i — 11 29--'9"

This theorem can often be used in cases when A,CX;, wi(4)<- and f;
is p; measurable over A4; in the Bourbakian sense, replacing g; by one of its
restrictions.

2.7 A special case. In 2.7 and 2.8 we shall treat the important special case in
which the functions g; , are mapping an open subset of R* into R*. These results
are not so general as 2.3, 2.4, 2.5 and 2.6, but it can often be applyed more
easily. In the proof of the theorem we shall use the following proposition, which
can be found in FEDERER [9], 2.2.7.

2.7.1 Proposition. In case X is a convex subset of a normed vectorspace, f is
a function mapping X into a normed vectorspace Y, and M is a positive real number,
the conditions

If()—f(2)| = M-|x—2z| forevery x,z€X

imsup L/

=X |

and

=M forevery xeX

are equivalent. [Here | | is the norm on X or Y.]
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2.7.2 Theorem. Let T be a locally compact metric space, let Z, be a metric
space, and let Z; (i=1,2, ..., n) be separable metric spaces. Suppose, that D is an
open subset of TXR* and X,CR* for i=1,2,...,n. Let fy: T—+Z,, f;: X;~Z,,
gi:D—=X;, h: DXZ\XZyX .. XZ,~Z, be functions. Suppose, that the following
conditions hold:

(1) For every (t,y)eD

fﬂ(f) — h("a }’, fl(gl(f’ .V)): LALE fn(gn(’l .}.)))

(2) f; are Lebesgue measurable over X; for i=1,2,...,n.

(3) h is continuous on compact sets.

(4) For i=1,2,...,n g; is continuous, and for every fixed t¢T the mapping
y—~gi(t, ¥) are differentiable with the derivate D,g;(t, y) and with the
Jacobian J,g,(t,y), moreover, the mapping (t,y)—=D,g;(t,y) is continuous
on D and for every t€T there exists a (t,y)€D so that

Jagl(t, ) #0 for i=12,...,n
Then f, is continuous on T.

Proor. We prove, that if (t,, y))€D and J,g(ty, y)) =0 for i=1,2,...,n,
then f is continuous at 7,. Let L; be the inverse of the linear operator D,g;(1,, ¥,).
By (4) the functions (#, y)—~D,g;(t,y) are continuous mappings from D into the
space of linear transformations of R* into itself provided by the operator norm
| |Il. Hence there exists =0 and a compact subset 7* of T containing a neigh-
bourhood of ¢,, so that (¢, y)eD,

[LioDygi(t, y)—1| = % jor Ra=1, 0 .8,

where 7 is the identical mapping of R* onto itself, and
0= |lg(t,y) for i=12..,n,
whenever t€T* and |y—y,|<d. [Here | | is the usual norm on R%]
It = {y:yGR“ and !y—ynlr_;%}. DT &2k el 1N

Xr=g(D*) (i=1,2,...,n), v*=i2", ur=i2%, (i=1,2,...,n), f=f|X}
(i=1,2,....,n), fo'=5I|T" gf=g,|D*, and let h* be the restriction of / onto
D*XZ X ZyX...XZ,. Clearly uf is a Radon measure on X and puf(X)<=<
since gf(D*) is compact.

It is now possible for us to complete the proof using theorem 2.5 with sets,
measures and functions denoted by *.

The conditions 2.5(1), (2), (4), (5) and (6) are obviously satisfied, and so it
is sufficient to prove the existence of positive real numbers ¢; so that

/(801 (A) = ¢+ 2(A)
whenever t€7" and Acg; (Y"). First we prove, that

{.": Y€ R*, ly—yol < 5}
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is mapped by g;, into R* one-to-one, whenever tc7*. Let i and t¢T" be fixed,
and let the function G:Y*—~R* be defined by

G(y) = L/(g(t, y)—y for [y—y, <.

Since the derivate of G at y is equal with L;oD,g;(r, y)—1, having a norm not
greater than 7‘3, using the previous proposition we have

3 gh - & . .
lo(y)—G(z)I‘éiw—z; if |y—yol =<0 and |z—y, <.

Hence
1 1
ILE(&'(’, »)—Li(g(1, '-’)]‘ - {Li(gi(rs V)-8t 2))| = 3 y—z|

and so

Ig;(r,z)—ge(r,_v)léﬁ if |[y—yl<d and [|z—y, <0.

Next we apply the formula concerning transformation of integrals [see 3.3.1, or
Federer [9] 3.2.1, 3.2.3 and 3.2.5] with the inverse of the restriction of g; , onto

{v: YERY, |y—y,| <8}
We get that

i(gii(A) = %-;L(A) whenever (€T* and Acg (YY),

and this completes the proof.

2.8 Remarks

2.8.1 We get an other form of 2.7.2, if we omit the condition *“T is locally
compact’ but suppose, that A(X;)=-<> and X; is Lebesgue measurable, and replace
2.7.2(3) by

(3) For every compact subset C of Z;XZ,x...XZ,, h is uniformly contin-

uous on DXC.
The proof is like that of theorem 2.7.2.

2.8.2 Using 2.6 instead 2.5, the theorem 2.7.2 can be generalized for the case
in which (Z;, t;) is an uniform space (i=0,1,...,n) and T is a locally compact
topological space. The ditions 2.7.2(1) and 2.7.2(4) are unchanged, the con-
ditions 2.7.2(2) and (3) are to be replaced by the followings:

(2) f; i1s Lebesgue measurable over X; in the Bourbakian sense.

(3) For every 1,€T, V,€1, and compact subset C of Z,XZ,X...XZ, there

exist a neighbourhood V of 1, and Vet (i=1,2,....n) so that

(RED 2585 e s 20 BBy Vi 383 i ZDNE NG
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whenever teV, (z;,z))eV, (i=1,2,...,n), (t,y)ED, (t,, y)€D,
(B8 e DIEE 808 (R s BDEC,

2.8.3 We get an other form of 2.8.2, if we omit the condition “T is locally
compact”’, but suppose, that A(X;)<-> and X, is Lebesgue measurable.

§ 3. Families of relations uniformly continuous in measure

3.1 Remarks. The following remarks give evidence that uniform continuity
in measure of a family of relations may be reduced to uniform continuity in measure
of simpler families of relations or those of functions. The above mentioned is necessary
to state, because in points 3.2 and 3.3 conditions valid for uniform continuity in
measure of families of functions only are given.

The proofs are simple calculations, thus, they are omitted. Let ¢ and v be meas-
ures over X and Y, respectively, and let T be a set.

3.1.1 If g, ,Cgs,XXY for every t€T, and the family of relations g, ,, t€T
is uniformly continuous in measure, then the family of relations g, ,, 1€ T will be
uniformly continuous in measure.

312 If for i=1,2,...,n g ,<XXY, and the families of relations g;, tcT

are uniformly continuous in measure then the family of relations 8, t€T
=]
will be uniformly continuous in measure.

3.1.3 Let g, cXXY for every te¢T. If for each ¢=0 and 76T there exist
relations g, , and g,, such that g,=g, ,Ug,,, v(g,,(X))<e and the family of
relations g, ,, 1€ T is uniformly continuous in measure then the family of relations
g:, 1€ T is uniformly continuous in measure.

3.14 Let g, YXX be a function for every t€T. The family of relations g; !,
t¢T is uniformly continuous in measure if and only if the following assertion is
true:

For every &=0 there exists a =0 that BCY, v(B)=¢ and t€T implies

u(g(B))=4.

3.2 Families of real functions. We will give sufficient conditions for uniform
continuity in measure of families of real functions.
If gcRXR a function and x is an interior point of dmn g, we will use the
Dini-derivates
g(x+h)—g(x)
h

g(x+h)—g(x)
T .

i 3
Dtg(x) = Im’}‘}'nf

D_g(x) = Imm’up

We need the following statement, which is a simple consequence of HEwWITT
and STROMBERG [12], (18.48).
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3.2.1 Let ¢=0 be a real number and let gcRXR be a function with an open
domain. Supposing that D*g(x)=c¢ and D_g(x)=—c for every xcA(ldmn g,
where ACR, we have

i(g(A)) = c+i(A).

The following theorem gives a general condition for the uniform continuity
in measure of families of real functions.

3.2.2 Theorem. Let T be a nonvoid set, and for every tcT let g “RXR be
a function with an open domain. Supposing that D*g,(x) and D_g,x) are finites
for every te T and xcdmn g,, moreover, that there exists a natural number L such
that

SI b, <ee
n=L

where b, = sup {}.{x: xédmng,, D*g(x)>n or D_g,(x) <=—n}: t€ T}.

Then the family of relations g,, t€T is (2, 2)-continuous in measure uniformly
in teT.
PROOF. Let ¢ be a positive real number. Since > b,< <=, there exists a natural
n=L
number M =L, for which

oz &
b, < —.
A1

N & "
Moreover, there exists a natural number N=M, such that N-:.by< e since

supposing b,= 4% for every n=M we should have

- -
Sb=3 =
n=M n=M
a contradiction. Let 5=78ﬁ' We will prove that ACR and Ai(A4)<d implies
/(g (A))=¢ forevery t€T.
Let ¢ be fixed. If n=N,N+1, ..., let

A, = {x: x¢dmng,, D*g,(x)>n or D_g,(x) <—n}.

Clearly, AyDAxiyD..., ) A,=0 and A(4,)=b, if n=N, N+1,.... Since A

n=N
is a Radon measure, there exists a sequence B,, n=N, N+1, ..., of . measurable
sets, for which Byo>By,;>..., B,DA, and zZ(B):).(A) if n=N,N+1, ....

Replacing B, by B, [ﬂ BwA] we assume ﬂ B,=0. Let Cy=R~By and
n=N
for n—N+1 N+2, ... let C,=B,_,~B,. Clearly the C,’s are disjoint, A measur-

able, UC R, C,NA4,=0 and B,= U C;, if n=N, N+1, .... Using 3.2.1,

i=n+1
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we have that n=N and AcC, implies A(g,(4))=n-i(A4). Let A be a subset
of R with A(4)<d. Then

oo

A(g,(4)) = i Mg(ANCY) = A(gANCY)+ 3 i(g(ANCY) =

n=N+1

1A

N-A(ANCy+ 5’ A(g(C)) = N-6+ 3 n-i(C)=
n=N+1 1

n=N+

=s+N- 3 MO+ S 3 MC)=
i=N+1 n=N i=n+1

- _;_,_N.;_ [fzu IC.-]+ 2.0‘ }_[l G C.‘,-] = %+N-}.(BN)+

f=n41

S b,,-=:£+ 2-0' b, = e&.
N 4 n=M

oo : &

+ 2 A(B) =5+N-by+

n=N oo n=N

3.2.3 Let T be a set, and for every t€7T, let g,CRXR be a function. If we

study the (4, A)-continuity in measure of the family of relations g% €T, it is
usually sufficient to use 3.1.1, 3.1.2, 3.1.3 and the following proposition.

Proposition. Let T be a set, and for every tc€T let g, be a one-to-one everywhere
differenciable function with the open domain S,. If there exists a positive real number
¢ such that g/ (x)|=c for every t¢ T and x€ S,, then the family of relations g7 ', t¢T
is (A, A)-continuous in measure uniformly in tcT.

PRroor. Let us observe that for every 1€7, g,(S,) is an open subset of R and
g ! is a one-to-one everywhere differentiable function with domain g,(S,) and with

the derivate between —% and {L Now use 3.2.2.

3.3 Families of other functions. In this section we will give some conditions
for uniform continuity in measure of families of functions mapping metric space
into metric space. Theorem 3.3.1 is a well-known and simple consequence of more
general theorems [See FEDERER [9], under points 3.2.1, 3.2.5]. It is obvious, that
using the more general results instead of 3.3.1, the theorems 3.3.2 and 3.3.3 based
on the later 3.3.1 can be more generalized.

3.3.1 Theorem. Let S be an open subset of R" and g:S—+R" a one-to-one every-
where differentiable function with Jacobian Jg(x) at x¢ S. Then for every /. measurable
subset A of S

i(g(A) = f Jg(x)| dix.
A

3.3.2 Theorem. Let T be a nonvoid set, and for every t¢T let g, an everywhere
differentiable one-to-one function with an open domain S,—R" and image contained
in R". Let Jg,(x) denote the Jacobian of g, at x¢ S,. Let suppose that there exists
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a natural number N such that with

b, = sup {i{x: x€S,, |Jg (x)| > n}: te T},

S bu =,
n=N

Then the family of relations g,, t€ T is (4, 2)-continuous in measure uniformly in t€T.
The proof is like that of theorem 3.2.2.

3.3.3 Proposition. Let T be a set, and for every t€T let g, an everywhere con-
tinuously differentiable, one-to-one function with an open domain S,—R" and image
contained in R". Let Jg,(x) denote the Jacobian of g, at x€ S,, and suppose, that there
exists a ¢=0 real number such that |Jg,(x) =c for every t€T and x¢S,. Then
the family of relations g7 ', t€ T is (4, .)-continuous in measure uniformly in tcT.

The proof is obvious, and we omit it.

Obviously using the known fact about Hausdorff type measures [ see FEDERER [9]]
we can give many other examples for families of relations uniformly continuous
in measure. Using the terminology and one of the theorems of ROGERs [22], p. 53
we give here a further proposition with a simple and so omitted proof:

3.3.4 Proposition. Let T be a set, let (X, ¢) and (Y, 6) be metric spaces, and
for every teT let S,cY and g,: S,~X be a function. Let f:[0, ][0, =] be
a continuous strictly increasing function with f(0)=0, and let h be a Hausdorff
Sfunction [that is he #]. If

e(&(x), 8(») = f(o(x, ) for every 1€T. x,y€S,

then the family of relations g7, tc T is (Wyor, My)-continuous in measure uniformly
in teT.

3.3.5 Corollary. Let T be a set and for every tcT let g,cR"XR" be a function.
If there exists a real number ¢=0 such that

g (x)—g ()| =c-|x—y| forevery tcT, x,ycdmng,
[where | | is the usual norm on R" |, then the family of relations g7 *, t€T is (4, A)-
continuous in measure uniformly in tcT,
§ 4. Applications
4.1 On a functional equation of the information theory. In [15] it is proved by

PL. KANAPPAN and C. T. NG that every Lebesgue measurable function f:]0, I[-R
for which

(1) f(0) = =9+ —p)f [-T—_’-y-]—u | A

whenever (1, y)€D,
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where
D={(ty):t,y€]0, 1] and 1+y =< 1}

i1s continuous. (See in connection with this LEge [20], AcziL and DARrROCzY [2]).
Clearly, this is a simple consequence of theorem 2.7.2.

4.2 On the functional equation f(uv)+f((1—u)(1—0))=f(u(1—2v))+f(v(1 —u))
Let f:]0, 1[—=R be an unknown function and consider the functional equation
(1) fv)+f((1=u)(1=v)) = f(u (1 =0)) +£(v(1 — u))
whenever wu,v€]0, 1[.
In what follows we will prove that
f(x)=a-x-(1-x)+b-Inx+c¢ if x€]0,1]

is the general Lebesgue measurable solution of (1). (See also LaAik6 [19] and
ELIEZER [8].)

4.2.1 Theorem. Let f be a Lebesgue measurable solution of (1). Then f is
infinitely many times differentiable.

PROOF. Let fr=wuv and y=u(l—rv). With this substitution (1) changes to
the functional equation

) 10 =2 1 =1=p) s [ == +10)

for every (1, y)€D,

where D={(t,y):1,y€]0, 1[ and r+y<1}. Using theorem 2.7.2, we have that
/ is continuous on ]0, 1[. Having this, the theorem can be proved by means of
generally used methods. [See AcziL [1]].

Let 7, be any element of 10, 1[, and let O0<=a<pf<}t,—1,. Then there exist
real numbers a,,d,.b,,b,, ¢ and d, such that O<=c<t,<d<1 and for every
téfe,d]

(% A= 10, Vi—d[<]0, 14,

g ([e, d)X [, )< Nay, byl Jo, (1—y7)°[
ga(le, d1X [, ) Jag, by 10, 1 —1

where
V
,Y) = =——(1=t=y) fi , V)ED
g (1, ¥) [ﬂ( y) for (1, y)€
and
{
RO Py | e A G t, y)€D.
g:(1, y) r+y( y) for (¢, y)€
Let

1—t—x _ YG=(+))G—(-11))
2 2 '

hl(f, .‘.'} -
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if 1€)e, d[ and x€]0, (1=Y1)2[. If a t€]e, d[ is fixed in Ay (1, x), we get the inverse
of the mapping y—g,(r,y) of ]0,¥r—t[ onto ]0,(1—¥7)[.
Similarly, let

t
hg(f, X) = H-_x (] —f'—X)
if t€]e, d[ and x€]0, 1 —1¢[. If t€]c, d[ is fixed in Ay(z, x) we get the inverse of the

mapping y-g,(z,y) of 10,1 —1[ onto ]0, 1 —¢7[. Since if 7 is a fixed element of
le, d[, the functions

f(—'—(l—f—\)] f[$“—f—l)] and f(y)

of y are continuous on [x, f], from (2) we get

f # p 8
xff{r)dy ff[—u—r—n] dy+!f[mu—r—y)] dy+xff(y)d,r,

Hence, with the substitution x= 7 (1 —t—y) in the first and with the substitu-

: { : : . .
tion x= i (1—2—y) in the second member of the right side we get

ai(r. ) p
a G oc u'j;) f(x)'%hl(!, xX)dx+
{3} AL
g s 0 .
+mfﬂ f(x).ﬁhg(r, x)dx-+—!f(})dy.

Applying the theorem on differentiablity by parameter of parametric integrals
[see for example DIEUDONNE [7], p. 179] we have, that f is continuously diffe-
rentiable on Jc, d[ and so at 1,. Since t, was arbitrary, f is continuously differen-
tiable on ]0, 1[. Let us differentiate equation (3) with respect to 7. Using again the
theorem on differentiablity by parameter of parametric integrals, we get, that f”
is continuous on )0, 1[. Repeating this process, and using, that h,(r, x), hs(t, X),
gi(r,2) and g;(z, f) (i=1,2) are infinitely many times differentiable, the proof
is complete.
The next theorem is due to KAROLY LAJKO [unpublished].

4.2.2 Theorem. [ is a solution of (1) for which [ is continuous if and only if
(4) f(x)=a-x-(1—-x)+b-Inx+c¢
where a, b, ¢ are arbitrary real constans.

PRrOOF. It is easy to see, that every function type (4) is a solution of (1), and
we omit this simple calculation.

Let us differentiate equation (1) with respect to v and multiply by v—1. Inter-
changing the variables and substracting the so obtained equation from the original
we get

(5) (v—u)f (uv) = (u—1)f"(e(1—=w)+(1 =) f"(u(1—-0)).
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Repeating this with the equation (5) but multiplying by v instead of r—1, and add
the result to (5) we obtain

(6) 2(v—u)F(uv) = (1-20) F(u(1 —0)) + Qu—1)F(v(1 —u))
where
(7 F(x) = f(x)+xf" (x).

With the substitution r=% in (6) F [%] =-—F [l—;ﬁ] . hence

® F(3)-F(5") 1

Let us differentiate equation (6) with respect to v, with the substitution v= 5 and

use (8) we have

9) 4F(f)+(1—41)F’(1) = 0, where :=-‘-2‘-.

Solving this differential equation we have that there exists a€R for which
F(x)=a(l1—4x) if xE]O, %[
Hence by (7) there exist a, b, ¢ real numbers for which
fx)=a-x-(1-x)+b-Inx+c for x€]0, -:,l)-—[

But if u, v€]0, I[ and mﬂ:’-;—-, then wu(l—v), v(l —u), (l—u)(l—r-)e]O, %[ and
so by (1)
fx)=a-x-(1-x)+b:Inx+c for x€]0, I[.

4.3 On the cosine functional equation

In this section we will study the measurable solutions of the cosine functional
equation with the help of the general theorem 2.6. In connection with this func-
tional equation see BAKER [3], HiLLE and PHiLLIPS [13], KUREPA [17] and NAGY [21].

Proposition. Let G be a locally compact Hausdorff group with the following

property:

(1) G has a compact subset C with positive left Haar measure such that for
any compact subset A of C with positive left Haar measure the left Haar
measure of the set {x*: x€ A} is positive too.

If H is a topological ring, f: G—H, [ is left Haar measurable in the Bourbakian
sense and

(2) fuo)+f(ue=) = 2f(u)f(v) for every u,v€G,

then f is continuous on G.
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PrOOF. From (2), with r=wuv~!, y=v, we have

@) =2fn)f(»)—f(ty?) for every t,yeG.

Let t, denote an arbitrary element of G. We prove, that f is continuous at 7,. We
will use 2.6. Let 7 be a compact set containing a neigbourhoud of ¢,, let C be the
set from (1), D=TXC, and let Y=X,=X,=X;=G with the right uniform
structure of G. Let Z,=H for i=0,1,2,3 with the uniform structure of H as
an [additive] topological group. Let v=4, the left Haar measure on G, let
11 (B)=/(TNB), uy(B)=Ai(CNB), us(B)y=i(BN{ty*:teT, yeC}), for BCG, fy=
=fIT and fi=f for i=1,2,3. Let h(t,y,z, 2z, z,)=22,2z,—2; for every
(t,y)¢D and z;£Z; (i=1,2,3). Next let the functions g;:D—-X; be defined with

g,(t.y)=ty for (t,y)éD
gLy)=y for (t,y)ED
g (7, y) = ty* for (1, y)€D.

Clearly, the conditions 2.5(1), 2.5(4), moreover 2.6(2), 2.6(5) and 2.6(6) are
satisfied. It is easy to see the uniform continuity in measure of the families of
relations g;{,7€T and gs |, €T, thus, we can prove this only for g5}, 7¢T.

Since if BcG, then

{}.2: y€eC, ty2¢ B} = f‘lo(Bﬁ{f}'zl teT, IEC})

for every 1€ T, it is sufficient to prove that for every =0 there exists a d=0 such
that Bc {y*:yeC} and A(B)<d implies A{y:y*¢B}<e. Suppose, that this is
not true. Then there exists an g&=0, and for every natural number » an open

subset U, of G for which ).(U,,)-:-QIT and

A{y: y€C and y*c U,} = ¢,.

Since the mapping y-y* is continuous, the sets {y: y*c U,} are open, and so the
sets {y: y2€U,}"C are A measurable.
oo . l
Let B,,={y'3:y€C'}ﬂ[‘LxJ“U,-]. Then B,DB,D..., x.(B,,)-c:‘zTr'lT and the sets
{y: y?€B,} are /. measurable with finite measures which are not less then &,. If

B = {y: y2eN B,,}, then A(B) =¢, =0,
n=1
but

A{y: ye B} =14 [ﬁ Bl=0
n=1

If 4 is a compact subset of B with positive left Haar measure we have a contradic-
tion with (1).

3 D
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Condition (1) is fulfilled in many important locally compact Hausdorff groups,
but not in all of them. For example, if G={—1, 1} with multiplication and discrete
topology, and n is a cardinal number, then G satisfies (1) if and only if n
is finite.

It is easy to see, that any groups the with discrete topology, R”, and the complex
unit circle with the usual topology satisfy (1). If G, and G, satisfy (1) with subsets
C, and C, then G=G,X G, satisfies (1) with C=C,XC,. Indeed, if 4 is a compact
subset of C and 4(A4)=0, then by Fubini’s theorem there exists a compact subset
A, of C, such that i(4;)=0 and A{x,: (x;, x;)€A4}=>0 for every x,€4,. Hence
24x3: (x;, x2)€A}=0 for every x,€4,, thus with the notation

B={(x}, x3): (%1, X,)€ A4}

for every element y, of the set B,={x}: x,€4,} with positive measure the set
{»2: (3, y2) € B} has a positive measure, e.g. B has a positive measure.

In the followings we shall prove that every Lie group satisfies condition (1).
Let G be an n-dimensional Lie group with the unit element e. It is not hard to prove
using some theorem on left Haar measure of Lie groups [see, for example
CHEVALLEY [5]] that there exist open subsets U, ¥ and a homeomorphism ¢ of U
onto an open subset of R" so that ecVc U, ¢(e)=0, the mapping (x,))—~
=@(@'(x)« (¢~ (»)"!) is an analitic mapping of @(¥)X¢e(V) into ¢(U) and
that for every compact subset A4 of V the left Haar measure of 4 and the n-dimen-
sional Lebesgue measure of ¢ (A) vanish together. Since the Jacobian of the mapping

x =@ '(x)-@(x)

of (V) into @(U) equal 2" at 0, we have that there exists an open neighbourhood
W of ein G so that W2 ¥ and the Jacobian of the mapping x—¢ (¢ (x)- ¢~ (x))
over @(W) not less than 1. Hence by the transformation formula of integrals for
any compact subset 4 of W the Lebesgue measure of ¢({x*: x€A4}) not less than
the Lebesgue measure of ¢(A4). Hence G satisfies (1) with any compact subset C
of W wich has a positive left Haar measure.
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