Lattice ordered rings

S. A. TODORINOV, St. G. TENEVA (Plovdiv)

It is noted in the monograph of L. Fuchs [1] that the general theory of lattice ordered rings is still not developed. It considers predominatly the so-called *F*-rings which are subrings and sublattices of a complete direct sum of linear ordered rings. With regard to this Fuchs puts the following problem No 34: "When is a ring isomorphic to a lattice ordered ring?, i.e. under what condition does a given ring allow a lattice order."

The present paper gives a necessary and sufficient condition for an extension of the partial order in a ring to be a latticed order. In the particular case of the trivial order $P = \{0\}$ an answer is obtained to Fuchs' problem.

Definition. We shall say, that the partially ordered ring R is lattice ordered, if its additive group is lattice ordered, i.e. for each pair $g, g' \in R$, $g \neq g'$ there exists one $s \in R$ such that $s-g \ge 0$ $s-g' \ge 0$ and for any $t \in R$ with $t-g \ge 0$, $t-g' \ge 0$ one has $t-s \ge 0$.

If R is a directedly ordered ring, then for each $g, g' \in R$, $g \neq g'$ there exists a nonvain set of the elements s of R having the conditions $s-g \ge 0$, $s-g' \ge 0$. It is denoted by S(g,g'). Obviously then H(s-g,s-g') is a conic semiring for every $s \in S(g,g')$.

Let R be such a ring, that for every $g, g' \in R$ there exists $S(g, g') \neq \emptyset$. Let \overline{R} be the sign for the set of all ordered pairs of different elements from R, i.e. $\overline{R} = R^2 \setminus \operatorname{diag} R$. Then there is a function \overline{F} defined on \overline{R} with values in S(g, g').

Theorem. The partial order P in the ring R can be extended to a lattice order if and only if it satisfies the following condition:

(A) For every $(g, g') \in \overline{R}$ the set S(g, g') is nonvain and there exists a function \overline{F} , so that if $(g_1, g'_1), \ldots, (g_n, g'_n) \in \overline{R}$ and s_1, \ldots, s_n are their corresponding elements by \overline{F} and if

$$t_1 - g_1, t_1 - g_1' \in H(P, s_1 - g_1, s_1 - g_1') = P_1,$$

$$t_n - g_n, t_n - g'_n \in H(P_{n-1}, s_n - g_n, s_n - g'_n) = P_n,$$

then the semiring

$$H(P, s_1-g_1, s_1-g_1', \ldots, s_n-g_n, s_n-g_n', t_1-s_1, \ldots, t_n-s_n)$$

is a conic semiring (c.s.)

PROOF. The *necessity* is obvios. Indeed let R be a ring, wich admits an order P that can be extended to a lattice order P^* . Then according to the definition there

follows that for every $g, g' \in R$, $g \neq g'$ there exists $s \in R$, such that $s - g \ge 0$, $s - g' \ge 0$ and if there exist $t \in R$, such that $t - g \ge 0$, $t - g' \ge 0$, then $t \ge s$. Hence for every $g, g' \in R$, $g \ne g'$ there exists $S(g, g') \ne \emptyset$ and H(s - g, s - g') is a c.s. It also follows that there exists \overline{F} such, that when $(g, g') \in \overline{R}$, then $\overline{F}(g, g') \subseteq S(g, g')$. Then obviously the semirings

$$P_1 = H(P, s_1 - g_1, s_1 - g_1'), \dots, P_n = H(P_{n-1}, s_n - g_n, s_n - g_n')$$

are conic semirings for every $(g_1, g_1'), \ldots, (g_n, g_n') \in \overline{R}$. Hence if $t_i - g_i, t_i - g_i' \in P_i, i = 1, 2, \ldots, n$ then

$$H(P, s_1-g_1, s_1-g_1', \ldots, s_n-g_n, s_n-g_n', t_1-s_1, \ldots, t_n-s_n)$$

is a c.s..

Sufficiency. Let R be a ring with partial order P satisfying condition (A). First we shall show that $P^* = H(P, s - g, s - g', t - s)$ where $(g, g') \in \overline{R}$, $s = \overline{F}(g, g')$; $t - g, t - g' \in P$ also satisfies condition (A). Obviously P^* is a c.s.. Let $(g_1, g_1'), \ldots, (g_n, g_n') \in \overline{R}$ and s_1, \ldots, s_n be their corresponding elements by \overline{F} . Let $t_1 - g, t_1 - g_1' \in H(P^*, s_1 - g_1, s_1 - g_1') = P_1^*, \ldots, t_n - g_n, t_n - g_n' \in H(P_{n-1}^*, s_n - g_n, s_n - g_n') = P_n^*$, then

$$H(P^*, s_1 - g_1, s_1 - g_1', \dots, s_n - g_n, s_n - g_n', t_1 - s_1, \dots, t_n - s_n) =$$

$$= H(P, s - g, s - g', s_1 - g_1, s_1 - g_1', \dots, s_n - g_n, s_n - g_n', t - s, t_1 - s_1, \dots, t_n - s_n)$$

but this is a c.s.. Hence P^* satisfies condition (A).

Let us use the symbol Σ for the set of all extensions of P, which satisfy the condition (A) by means of the same function \overline{F} . We shall show that $\bigcup P_{\alpha} = \overline{P} \in \Sigma$, where $P_{\alpha} \subseteq P_{\beta}$, $\alpha < \beta$.

where $P_{\alpha} \subseteq P_{\beta}$, $\alpha < \beta$. We admit the opposite that \overline{P} does not satisfy the condition (A). That will mean that there exist such $(g_1, g_1'), \ldots, (g_n, g_n') \in \overline{R}$ and if s_1, \ldots, s_n are their corresponding elements by \overline{F} , then for some elements

$$t_1 - g_1, t_1 - g_1' \in H(\overline{P}, \quad s_1 - g_1, s_1 - g_1') = \overline{P}_1,$$

$$t_n - g_n, t_n - g'_n \in H(\overline{P}_{n-1}, s_n - g_n, s_n - g'_n) = \overline{P}_n,$$

the semiring

$$H(\overline{P}, s_1-g_1, s_1-g_1', ..., s_n-g_n, s_n-g_n', t_1-s_1, ..., t_n-s_n)$$

is not a conic one. This indicates that there exists some $P_{\alpha_i} \in \{P_{\alpha}\}$ such that $a, -a \in H(P_{\alpha_i}, s_1 - g_1, s_1 - g_1', \ldots, s_n - g_n, s_n - g_n', t_1 - s_1, \ldots, t_n - s_n)$ but this contradicts the condition that (A) is satisfied for each P_{α} . Hence \overline{P} satisfies (A).

Then according to Zorn's lemma the set \sum have a maximum element Q which will satisfy the condition (A). Let $(g, g') \in \overline{R}$ and s be the corresponding element by \overline{F} and t-g, $t-g' \in Q$. Then $H(Q, s-g, s-g', t-s) \in \sum$ and there are that

$$Q = H(Q, s-g, s-g', t-s)$$

which indicates that Q is a lattice order.

Corollary. A ring R admits a lattice order if and only if the following condition is satisfied:

(A) For every $(g,g') \in \overline{R}$ the set S(g,g') is nonvain and there exists a function \overline{F} , so that if $(g_1,g_1'),\ldots,(g_n,g_n') \in \overline{R}$ and s_1,\ldots,s_n are their corresponding elements by \overline{F} and if

$$\begin{split} t_1 - g_1, \, t_1 - g_1' &\in H(s_1 - g_1, \, s_1 - g_1') = P_1, \\ t_2 - g_2, \, t_2 - g_2' &\in H(P_1, \quad s_2 - g_2, \, s_2 - g_2') = P_2, \\ & \dots \\ t_n - g_n, \, t_n - g_n' &\in H(P_{n-1}, \, s_n - g_n, \, s_n - g_n') = P_n, \end{split}$$

then the semiring

$$H(s_1-g_1, s_1-g_1', \ldots, s_n-g_n, s_n-g_n', t_1-s_1, \ldots, t_n-s_n)$$

is a conic one.

The proof follows immediately from the theorem when P is a trivial order, i.e. $P = \{0\}$.

The present paper was reported in september 1975 at the First Bulgarian Colloquy of Algebra.

Literature

[1] L. Fuchs, Partially ordered algebraic systems, 1963.

(Received October 23, 1975.)