Divisibility properties of arithmetical functions

By I. KÁTAI (Budapest)

1. Let us suppose that $g_1(n), \ldots, g_k(n)$ are additive arithmetical functions having only non-negative integer values. Let \underline{m} denote vectors the components m_i of which are non-negative integers. Let

$$g(n) = (g_1(n), ..., g_k(n)).$$

The purpose of this paper is to calculate the asymptotical density of the sequence n satisfying the relation $g(n)=\underline{m}$, for fixed \underline{m} 's, and for a large class of functions.

Let

(1.1)
$$N(x, \underline{m}) = \sum_{\substack{n \le x \\ g(n) = \underline{m}}} 1.$$

Let **P** denote the set of primes, and for every feasible \underline{m} let $\mathbf{P}_{\underline{m}}$ be the set of primes p satisfying the relation $\underline{g}(p) = \underline{m}$. Let $\pi_{\underline{m}}(x)$ be the number of elements in \mathbf{P}_m that do not exceed x. It is obvious that

(1.2)
$$\sum_{\underline{m}} \pi_{\underline{m}}(x) = \pi(x).$$

Furthermore we shall suppose that the inequality

(1.3)
$$\sum_{m} |\pi_{\underline{m}}(x) - c_{\underline{m}} \pi(x)| \leq \frac{Kx}{(\log x)^{1+\gamma}}$$

holds, where K and γ are positive constants, $c_m \ge 0$ for every \underline{m} .

From (1.2) we have easily that

$$\sum_{m} c_{\underline{m}} = 1.$$

On the assumption of (1.3) we can determine the asymptotical behaviour of $N(x, \underline{m})$.

Let

$$G_{\underline{m}}(s) = \sum_{g(n)=m} \frac{1}{n^s},$$

s being a complex variable. Let

(1.6)
$$e_{\underline{m}}(p^l) = \begin{cases} 1 & \text{when } \underline{g}(p^l) = \underline{m}, \\ 0 & \text{otherwise.} \end{cases}$$

We investigate the asymptotic of $G_{\underline{m}}(s)$ at s=1. Then, by using a tauberian theorem due to H. Delange [1] — which we state as Lemma 1 — we get almost immediately the asymptotic of $N(x, \underline{m})$.

2. Lemma 1. (1) If $a_n \ge 0$, b is a real number and for Re s > b we have

(2.1)
$$\sum_{n=1}^{\infty} a_n \cdot n^{-s} = (s-b)^{-a} \sum_{j=0}^{m} h_j(s) \log^j \left(1/(s-b) \right)$$

where a is positive, $h_0(s), ..., h_m(s)$ are regular for $\text{Re } s \geq b$ and $h_m(b) \neq 0$, then

(2.2)
$$\sum_{n \le x} a_n \sim b^{-1} h_m(b) \Gamma^{-1}(a) x^b (\log \log x)^m (\log x)^{a-1}.$$

(2) If $a_n \ge 0$ and

$$\sum_{n=1}^{\infty} a_n \cdot n^{-s} = h_0(s)(s-1)^{-a} + \sum_{j=1}^{m} h_j(s)(s-1)^{-c_j} + h(s)$$

for Re s>1, where a is a real number not equal to zero or a negative integer, $h_0(s)$, ..., $h_m(s)$, h(s) are regular for Re $s\ge 1$, $h_0(1)\ne 0$ and the constants c_j are real numbers not equal to zero or a negative integer all less than a, then

$$\sum_{n \le x} a_n \sim h_0(1) \Gamma^{-1}(a) x (\log x)^{-1}.$$

(3) If $a_n \ge 0$ and

$$\sum_{n=1}^{\infty} a_n \cdot n^{-s} = \sum_{j=0}^{m} h_j(s) \log^j (1/(s-1))$$

for Re s>1, where $h_0(s), \ldots, h_m(s)$ are regular for Re s>1, $m \ge 1$ and $h_m(1) \ne 0$, then

$$\sum_{n \le x} a_n \sim mh_m(1) x (\log \log x)^{m-1} (\log x)^{-1}.$$

3. The case $\underline{m} = \underline{0}$. It is obvious that

(3.1)
$$G_{\underline{0}}(s) = \prod_{l=1}^{\infty} \left(1 + \sum_{l=1}^{\infty} e_{\underline{0}}(p^{l}) p^{-ls} \right),$$

and the product converges absolutely in the halfplane Re s > 1.

a. The case $c_0 > 0$. We shall prove that the function

$$(3.2) u_0(s) = G_0(s) \cdot [\zeta(s)]^{-c_0}$$

is regular in the halfplane Re $s \ge 1$, and that $u_0(1) \ne 0$. For this, we take

$$\log u_{\underline{0}}(s) = \log G_{\underline{0}}(s) - c_{\underline{0}} \log \zeta(s) = \sum_{p \in p_0} \frac{e_{\underline{0}}(p)}{p^s} - c_{\underline{0}} \sum_{p} 1/p^s + v_{\underline{0}}(s),$$

where $v_0(s)$ is regular and bounded in Re s > 3/4, say. Since

$$\sum_{p \in p_0} \frac{e_0(p)}{p^s} = \int_1^\infty u^{-s} d\pi_0(u) = s \int_1^\infty \frac{\pi_0(u)}{u^{s+1}} du,$$

and

$$\sum_{p \in P} 1/p^s = s \int_1^\infty \frac{\pi(u)}{u^{s+1}} du,$$

therefore

(3.3)
$$\log u_{\underline{0}}(s) = s \int_{1}^{\infty} \frac{\pi_{\underline{0}}(u) - c_{\underline{0}}\pi(u)}{u^{s+1}} du + v_{\underline{0}}(s).$$

So, by (1.3) the last integral is convergent for Re $s \ge 1$. Since $\zeta(s)(s-1) \to 1$ for $s \rightarrow 1$, we get

(3.4)
$$G_0(s) = h_0(s)(s-1)^{-c_0}$$

where

(3.5)
$$h_0(s) = \frac{G_0(s)}{(s-1)^{c_0}} \left(\frac{s-1}{\zeta(s)}\right)^{c_0}.$$

By Lemma 1, we get

$$(3.6) N(x,\underline{0}) \sim A(\underline{0})\Gamma(c_0)^{-1}x(\log x)^{c_0-1}$$

where A(0) being a positive constant defined by

(3.7)
$$A(\underline{0}) = \lim_{s \to 1+0} G_{\underline{0}}(s) \cdot (s-1)^{-c_{\underline{0}}}.$$
 b. The case $c_0 = 0$.

In this case we can prove only the inequality

(3.8)
$$N(x, \underline{0}) \ll x \exp\left(\sum_{p < x} \frac{e_{\underline{0}}(p) - 1}{p}\right),$$
 which by

$$\sum_{p} \frac{e_{0}(p)}{p} < \infty$$

gives that

$$(3.9) N(x, \underline{0}) \ll x/\log x.$$

(3.8) is a special case of a general well known theorem.

4. The case $m \neq 0$.

For a general natural number K, let $G_0(s|K)$ be defined as

(4.1)
$$G_{\underline{0}}(s|K) = \sum_{\substack{(n,K)=1\\a(n)=0}} 1/n^{s}.$$

Then

(4.2)
$$G_{\underline{0}}(s|K) = \prod_{p \nmid K} \left(1 + \sum_{l=1}^{\infty} \frac{e_{\underline{0}}(p^{l})}{p^{ls}} \right).$$

Hence

(4.3)
$$G_0(s|K) = A(s|K) \cdot G_0(s),$$

where

(4.4)
$$A(s|K) = \prod_{p|K} \left(1 + \sum_{l=1}^{\infty} \frac{e_{\underline{0}}(p^l)}{p^{ls}} \right)^{-1}.$$

Let B denote the set of those integers K, for every exact prime power divisor $(p^{\alpha}|K)$ of which $g(p^{\alpha})\neq 0$.

Thus we get the relation

$$G_{\underline{m}}(s) = \sum_{\substack{K \in B \\ gK = \underline{m}}} \frac{1}{K^s} G_{\underline{0}}(s|K).$$

Hence, by (4.2) we get

$$(4.6) G_m(s) = G_0(s) \cdot H_m(s),$$

where

(4.7)
$$H_{\underline{m}}(s) = \sum_{\substack{K \in B \\ g(K) = m}} \frac{1}{K^s} A(s|K).$$

We can suppose that $\underline{g}(K) = \underline{m}$ is soluble for at least one $K \in B$, since in the opposite case $N(x, \underline{m}) = 0$, and $G_m(s) \equiv 0$.

For every $K \in B$ let

(4.8)
$$K = L_1 L_2 R, \quad L = L_1 L_2,$$

where L_1 contains exactly those exact prime power divisors $p^{\alpha} \| K$ for which $\alpha \ge 2$ (if it is an empty set then $L_1=1$), L_2 contains those primes $p(\|K)$ for which $c_{g(p)}=0$ (in (1.3)) and R contains the other prime divisors of K. This representation of K is unique.

Taking into account that A(s/n) is a multiplicative function of n, we get

$$A(s/K) = A(s/L) \cdot A(s/R).$$

Let L, L_1, L_2 be the set of the integers that occur as L, L_1, L_2 , respectively. From (4.9) we have

$$(4.10) H_{\underline{m}}(s) = \sum_{L \in \mathcal{L}} \frac{A(s/L)}{L^s} B(s|L; \underline{m} - \underline{g}(L)),$$

where

(4.11)
$$B(s/L; \underline{r}) = \sum \frac{1}{R^s} \cdot A(s/R),$$

he sum is extended over those R for which $R \in B$, (R, L) = 1 and $g(R) = \underline{r}$.

Let D denote the set of those vectors \underline{m} for which $c_{\underline{m}} > 0$. Let $R(\underline{r})$ denote the set of the solutions of the equation

$$(4.12) l_1 \cdot \underline{r}_1 + \dots + l_t \cdot \underline{r}_t = \underline{r},$$

where l_i are positive integers, $\underline{r}_i \in D$, $\underline{r}_i \neq 0$ (i=1, ..., t).

Let $S = (\underline{r}_1, ..., \underline{r}_t, l_1, ..., l_t)$ denote a particular solution of (4.12). We say that an R in the right hand side of (4.11) belongs to S, when after a suitable permutation of prime-factors of $R = p_1 ... p_s$ $(s = l_1 + l_2 + ... + l_t)$ we get

(4.13)
$$\begin{cases} \underline{g}(p_1) = \dots = \underline{g}(p_{l_1}) = \underline{r}_1 \\ \underline{g}(p_{l_1+1} = \dots = \underline{g}(p_{l_1+l_2}) = \underline{r}_2 \\ \vdots \end{cases}$$

Then, from (4.11) we have

$$(4.14) B(s/L; r) = \sum_{S \in R(r)} \Delta(s/L, S),$$

where

(4.15)
$$\Delta(s/L, S) = \sum \frac{A(s/R)}{R^s}$$

and the sum is extended over those R for which $R \in B$, (R, L) = 1 and $g(R) \in S$. Let T be an arbitrary set of primes. We have

(4.16)
$$\prod_{p \in T} \left(1 + \frac{zA(s/p)}{p^s} \right) = \exp\left(\sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l} z^l a_l(s) \right),$$

where

(4.17)
$$a_{l}(s) = \sum_{p \in T} \frac{A(s/p)^{l}}{p^{ls}}.$$

Let

(4.18)
$$H_n(s, \mathbf{T}) = \sum_{\substack{p_1 < \dots < p_n \\ p_i \in \mathbf{T}}} \frac{A(s/p_1) \dots A(s/p_n)}{(p_1 \dots p_n)^s}.$$

Taking into account that the functions in (4.16) can be expanded in Taylor series of z, comparing the coefficients we get

(4.19)
$$H_n(s, \mathbf{T}) = \operatorname{coeff} \exp\left(\sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l} z^l a_l(s)\right) =$$

$$= \operatorname{coeff} \left\{ \sum_{v=0}^{\infty} \frac{1}{v!} \left(\sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l} z^l a_l(s)\right)^v \right\} = \frac{1}{n!} a_1^n(s) + \sum_{j=0}^{n-1} h_j(s) \cdot a_1^j(s) + h(s)$$

where $h_j(s)$ (j=0, ..., n-1) and h(s) are bounded and regular functions in the halfplane Re s>3/4. The bound does not depend on T.

Let now T_i be the set of those primes p for which $\underline{g}(p) = \underline{r}_i$, $p \nmid L$. Then we get

(4.20)
$$\sum_{p \in \mathbf{T}_i} \frac{A(s/p)}{p^s} = \sum_{p \in \mathbf{T}_i} 1/p^s + v_1(s) = \sum_{p \in \mathbf{P}_{\underline{r}_i}} 1/p^s + v_1(s) - \sum_{\substack{p \mid L_1 \\ g(p) = r_i}} 1/p^s,$$

where $v_1(s)$ is bounded and regular in Re s > 3/4.

First we observe that

(4.21)
$$\sum_{p \in P_{t_i}} 1/p^s = \int_0^\infty \frac{d\pi_{\underline{r}_i}(u)}{u^s} = c_{\underline{r}_i} \log \frac{1}{s-1} + s \int_0^\infty \frac{\pi_{\underline{r}_i}(u) - c_{\underline{r}_i}\pi(u)}{u^{s+1}} du$$

and that the last integral is absolutely convergent in Re $s \ge 1$ see (1.3). We estimate the last sum in (4.20). Suppose that Re $s \ge 1$. Then

$$\sum_{\substack{p/L_1 \\ g(\mathbf{p}) = r_i}} 1/p^s \leq \sum_{p/L_1} 1/p \leq \log \prod_{p/L_1} \frac{1}{1 - \frac{1}{p}} = c(L_1).$$

Consequently the left side of (4.20) is equal to

(4.22)
$$c_{\underline{r}_{i}} \log \frac{1}{s-1} + v_{2}(s) + v(s/L, \underline{r}_{i})$$

where $v_2(s)$ and $v(s/L, \underline{r_i})$ are regular and bounded in Re $s \ge 1$, $v_2(s)$ does not depend on L, and

$$|v(s/L, r_i)| \leq c(L_1).$$

Hence, by (4.19) we get

(4.23)
$$\Delta(s|\mathbf{L}, S) = B(S) \left(\log \frac{1}{s-1} \right)^{\nu} + \sum_{j=0}^{\nu-1} t_j(s, L) \left(\log \frac{1}{s-1} \right)^{j},$$

where

(4.24)
$$B(S) = \prod_{i=1}^{t} \frac{c_{\underline{r}_i}^{l_i}}{l_i!}, \quad v = v(S) = l_1 + \dots + l_t,$$

and

$$|t_i(s,L)| \ll c(L_1)^{\nu}$$
 in Re $s \ge 1$.

For a fixed r let

(4.25)
$$\mu = \mu(\underline{r}) = \max_{S} v(S),$$

where $\mu(\underline{r})=0$ when $R(\underline{r})$ is an empty set. The value of μ does not depend on L. Let

$$(4.26) A_{\underline{m}} = \max_{L_1} \mu(\underline{r} - \underline{g}(L_1)).$$

Suppose that $A_m > 0$. Then we get — see (4.23), (4.15), (4.14), (4.10) —

(4.27)
$$H_{\underline{m}}(s) = A_{\underline{m}}(s) \left(\log \frac{1}{s-1} \right)^{A_{\underline{m}}} + \sum_{j=0}^{A_{\underline{m}}-1} B_{j}(s) \left(\log \frac{1}{s-1} \right)^{j},$$

where the functions $A_{\underline{m}}(s)$, $B_j(s)$ are regular in Re $s \ge 1$, and $A_{\underline{m}}(1) \ne 0$. By (4.6) we get

$$G_{\underline{m}}(s) = (s-1)^{-c_0} \sum_{j=0}^{A_{\underline{m}}} g_j(s) \cdot \left(\log \frac{1}{s-1}\right)^j,$$

$$g_{A_{\underline{m}}}(1) \neq 0.$$

This relation holds for $A_m=0$ too, since we assumed that g(n)=m has at least one solution. Hence, by Lemma 1 we get:

for
$$c_0 > 0$$

$$(4.28) N(x, \underline{m}) \sim B_{\underline{m}} x (\log x)^{-c_{\underline{0}}-1} (\log \log x)^{A_{\underline{m}}},$$

for $c_0 = 0$, $A_m > 0$,

(4.29)
$$N(x, \underline{m}) \sim B_m x (\log x)^{-1} (\log \log x)^{A_{\underline{m}}-1}$$

where B_m is a positive constant.

5. Theorem 1. On the assumption (1.3), by the notation (4.12), (4.24), (4.25), (4.26) we get:

(1) If $c_0 > 0$ and there exists at least one solution of $g(n) = \underline{m}$, then

$$N(x, \underline{m}) \sim B_m x (\log x)^{-c_0-1} (\log \log x)^{A_{\underline{m}}}.$$

(2) If
$$c_0=0$$
 and $A_m>0$, then

$$N(x, \underline{m}) \sim B_m x (\log x)^{-1} (\log \log x)^{\underline{a}_{\underline{m}}-1},$$

 B_m are suitable positive constants.

As it is easy to see from our result follows the assertion due to W. NARKIEWICZ [2] concerning the divisibility properties of integer-valued multiplicative functions defined as values of a polynomial for every prime.

6. Let $f_1(n), \ldots, f_k(n)$ be multiplicative functions having positive integer values. Let q_1, \ldots, q_k be arbitrary not necessarily distinct prime numbers. We define $g_i(n)$ as the greatest α for which q_i^{α} is a divisor of $f_i(n)$. It is clear that $g_i(n)$ are additive functions having non-negative integer values.

Assuming that the relation (1.3) holds for

$$g(n) = (g_1(n), ..., g_k(n)),$$

we can use Theorem 1 to determine the asymptotic behaviour of

$$N(x, \underline{m}) = \sum_{\substack{n \le x \\ g(n) = m}} 1.$$

To illustrate our theorem we investigate the divisibility properties of the Euler totient function.

Let $q_1 < q_2 < ... < q_k$ be distinct primes. Let $\underline{m} = (\alpha_1, \alpha_2, ..., \alpha_k)$, α_i be non-negative integers. Let $D = q_1^{\alpha_1} ... q_k^{\alpha_k}$. We say that D is a total divisor of N, if D/N and $q_i^{\alpha_i+1} \nmid N$ (i=1, ..., k). We write then $D \parallel N$. Let $N_D(x)$ denote the number of $n \le x$ satisfying the relation $D \parallel n$.

Let $\pi_{\underline{m}}(x)$ be the number of primes p not exceeding x for which $D \| p - 1$. Let $Q = q_1 \dots q_k$. We have

$$\pi_{\underline{m}}(x) = \sum_{\substack{p \equiv 1 \bmod D \\ \left(\frac{p-1}{D}, Q\right) = 1}} 1 = \sum_{\delta/Q} \mu(\delta) \sum_{\substack{p \equiv 1 \pmod {D\delta} \\ p \leqq x}} 1 = \sum_{\delta/Q} \mu(\delta) \pi(x, \delta D, 1)$$

where in general $\pi(x, k, l)$ denotes the number of primes $p \le x$ in the arithmetical progression $l \pmod{k}$. Using the prime number theorem for arithmetical progression see e.g. K. Prachar [3] we get

$$\pi_m(x) = c_m lix + O(x/(\log x)^{20})$$

uniformly for $D \le (\log x)^{10}$, where

(6.1)
$$c_{\underline{m}} = \sum_{\delta \mid Q} \frac{\mu(\delta)}{\varphi(D\delta)}.$$

Taking into account that

$$\pi_{\underline{m}}(x) \ll \frac{lix}{\varphi(D)} \quad \text{for} \quad D \leq \sqrt{x}$$

and

$$\pi_{\underline{m}}(x) \ll \frac{x}{D} \quad \text{for} \quad D \le x$$

we deduce easily that (1.3) holds. Now

(6.2)
$$c_{\underline{0}} = \sum_{\delta \mid O} \frac{\mu(\delta)}{\varphi(\delta)} = \prod_{i=1}^{k} \left(1 - \frac{1}{q_i - 1} \right).$$

We see that $c_0 > 0$ if $q_1 > 2$ and $c_0 = 0$ if $q_1 = 2$. Furthermore,

(6.3)
$$c_{\underline{m}} = \frac{1}{\varphi(D)} \prod_{i=1}^{k} \left(1 - \frac{1}{q_i}\right).$$

Thus from theorem 1 we immediately deduce

Theorem 2. (1) If $q_1 > 2$, then

$$N_D(x) \sim B_D x (\log x)^{-c_0-1} (\log \log x)^{\alpha_1 + \dots + \alpha_k}.$$

- (2) If $q_1=2$, $\alpha_1=0$, then $N_D(x)=1$ for $x \ge 2$.
- (3) If $q_1 = 2$, $\alpha_1 > 1$, then

$$N_{\rm D}(x) \sim B_{\rm D} x (\log x)^{-1} (\log \log x)^{\alpha_1 - 1}$$
.

PROOF. Assume that $q_1 > 2$. Then $c_{\underline{r}} > 0$ for every \underline{r} , consequently

 $\mu(\underline{r})$ = the sum of the components of \underline{r}

(see (4.12), (4.25)). Since

$$A_{\underline{m}} = \max_{L_1 \in \mathbf{L}_1} \mu(\underline{r} - \underline{g}(L_1)),$$

the maximum is taken for $L_1=1$. Thus

$$A_m = \alpha_1 + \ldots + \alpha_k,$$

and we can use Theorem 1.

Assume that $q_1=2$. The assertion (2) is obvious, let $\alpha_1>2$. To prove (3) we need take into account that $\underline{c_r}=0$ if and only if the first component of \underline{r} is zero. We have that $A_{\underline{m}}=\alpha_1$ and so we use Theorem 1.

References

- H. DELANGE, Généralisation du théorème de Ikehara, Ann. Sci. Ecole Norm. Supérieure, 71 (1954), 213—242.
- [2] W. NARKIEWICZ, Divisibility properties of a class of multiplicative functions, Colloquium Mathematicum, 18 (1967), 219—232.
- [3] K. Prachar, Primzahlverteilung, Berlin 1957.

(Received November 18, 1975.)