Divisibility properties of arithmetical functions
By I. KATAI (Budapest)

1. Let us suppose that g,(n). ..., g¢(n) are additive arithmetical functions
having only non-negative integer values. Let m denote vectors the components
m; of which are non-negative integers. Let

g(n) = (g1(n), ..., g(n)).

The purpose of this paper is to calculate the asymptotical density of the se-
quence n satisfying the relation g(n)=m, for fixed m’s, and for a large class of
functions.

Let
N(x, m) = L.
(1.1) n‘sz;
P
Let P denote the set of primes, and for every feasible m let P,, be the set of
primes p satisfying the relation g(p)=m. Let m,(x) be the number of elements
in P,, that do not exceed x. It is obvious that

(1.2) 2 m(x) = m(x).
Furthermore we shall suppose that the inequality
Kx
(1.3) g [ﬂﬂ(x)—fﬂ n(x)| = W

holds, where K and y are positive constants, ¢,=0 for every m.
From (1.2) we have easily that

(1.4) b 4 cm = L.
On the assumption of (1.3) we can determine the asymptotical behaviour of
N(x, m).
Let
1
(1.5) Gm(‘s) — Z s
g gm=m N

s being a complex variable. Let

I when g(p')=m,
(16) en(®) = | ;

0 otherwise.
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We investigate the asymptotic of G, (s) at s=1. Then, by using a tauberian

theorem due to H. DELANGE [1] — which we state as Lemma 1 — we get almost
immediately the asymptotic of N(x, m).

2. Lemma 1. (1) If a,=0, b is a real number and for Re s=b we have

2.1) S ayen=(s=b)~* 3 hy(s)log/ (1/(s—b))

where a is positive, hy(s), ..., h,(s) are regular for Re s=b and h,(b)#0, then

(2.2) > a,~b"Vh,(b)I '(a)x"(loglog x)" (log x)*~*.

=X

(2) If a,=0 and

M3

1= = hy(s)s— 1)+ 3 hy(s)(s— 1)<+ h(s)
J=1

I
-

for Res=1, where ais a real number not equal to zero or a negative integer, hy(s),
cos by (8), h(s) are regular for Res=1, hy(1)#0 and the constants c; are real
numbers not equal to zero or a negative integer all less than a, then

2 a,~hy(1)I(a)x(log x)~ 1.
3) If a,=0 and i

Sant = 3hy(s)log! (11~ 1)

n=1

for Res=>1, where hy(s), ..., h,(s) are regular for Re s=1, m=1 and h,(1)=0,
then
2 a, ~ mh,(1)x(loglogx)"'(log x)~.

n=x

3. The case m=0.
It is obvious that

(3.1 Go(s) = IT|1+ 2 fu(p')!?"’].
0 - “
and the product converges absolutely in the halfplane Res=1.

a. The case c¢,=0. We shall prove that the function
(3.2) g(s) = Go(s)-[L(s)] %

is regular in the halfplane Res=1, and that u,(1)=0.
For this, we take

eq(P)

log ug(s) = log Gy(s)—celog {(s) = 2

PEPE

'—('94; 1/p°* +v,(s),
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where v,(s) is regular and bounded in Res=3/4, say. Since

ea(p) f _‘dno(u) =g f 35_1) du,

PcPa
and
Zp= f 2 fu,
pePrP s+1
therefore
= fwo(u)—com(u
(3.3) log “2(5) = § f —-g-(—:‘ﬁjg—(—)-du+v.,(s).

So, by (1.3) the last integral is convergent for Res=1. Since ((s)(s—1)—1 for
s—1, we get

(3.4) Gg(s) = hy(s)(s—1)"%
where
G‘l(s) s— 1y
) ") =G [C(s)] '
By Lemma 1, we get
(3.6) N (x,0) ~ A(Q)I (co)~*x(log x)ce~!

where A(0) being a positive constant defined by
3.7 A0) = lilr_lguGo(s)-(s—l)“'s.
b. The case c,=0.

In this case we can prove only the inequality

-1
(3.8) N(x,0) < x exp [ > %),
which by T
5 e(p) %c
p P
gives that
(3.9 N(x,0) =< x/log x.

(3.8) is a special case of a general well known theorem.

4. The case m=0.
For a general natural number K, let G,(s|K) be defined as

@.1) Gos|K)= 3 1/n.
= nK=1
gtn]='f-|
Then

oo l)

(4.2) Go(s|K) = [
= Mk
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Hence
43) Go(s| K) = A(s|K) - Go(s),
where 1
ea @ ( =l
(4.4) AGIK) =[] |1+ 3 Ef)] :
p/K i=1 P

Let B denote the set of those integers K, for every exact prime power divisor
(p*|K) of which g(p*)=0.
Thus we get the relation

@.5) Gl = 3 2:Gols|K).
Sl
Hence, by (4.2) we get i
(4.6) Gu(s) = Gols)- Hy(s).
where
@7 Hy®) = 3 = AGIK).
= KeB K
oK)=

We can suppose that g(K)=m is soluble for at least one K€ B, since in the
opposite case N(x, m)=0, and GE(S)EO.

For every K¢ B let
(4.8) K= Ll Lg R, L= L]_ Lg.
where L, contains exactly those exact prime power divisors p*|| K for which a=2

(if it is an empty set then L,=1), L, contains those primes p(||K) for which
¢y =0 (in (1.3)) and R contains the other prime divisors of K. This representation

of K is unique.
Taking into account that A(s/m) is a multiplicative function of n, we get
(4.9) A(s/K) = A(s/L)+ A(s/R).

Let L,L,, L, be the set of the integers that occur as L, L,, L,, respectively.
From (4.9) we have

(4.10) Ho() = 32D piL; m—g(@)),
- oy A

where

@.11) B(S/L; 1) = 3 2 AGIR),

he sum is extended over those R for which R€B, (R, L)=1 and g(R)=r.
Let D denote the set of those vectors m for which c!==-0. Let R(r) denote the

set of the solutions of the equation
(4.12) Lh-ny+...+hL-r,=r,

where /; are positive integers, r,€D, r;=0 (i=1,...,1).
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Let S=(ry,....Tnl, ..., 1)) denote a particular solution of (4.12). We say
that an R in the right hand side of (4.11) belongs to S, when after a suitable permuta-
tion of prime-factors of R=p, ... p, (s=l+1,+...+1) we get

g(p) =...=g(p) =1y
(4.13) g(Pr+1=---=g(Pry+1)) = Iz
Then, from (4.11) we have
(4.14) B(s/L: r)= 3 A(/L, S).
SER(r)
where
(4.15) AGIL, S) = 5 AS:{R)

and the sum is extended over those R for which R€B, (R, L)=1 and g(R)€S.
Let T be an arbitrary set of primes. We have

zA(s/p)) _ = (=1)-?
(4.16) pHT(H-T] —exp[%’ B Ck za,(s)]
where
A(s/p)
(4.17) aG) =3 ('zp) .
peT P
Let
(4.18) H(T)= J A(s/py) ... A(s/p,)

Py=<...=<p, (Py ... PW)*
pET
Taking into account that the functions in (4.16) can be expanded in Taylor series
of z, comparing the coefficients we get

(_l)l , 1
(4.19) H.(5.T) = cocffcxp Z— z a,(s)] =

= 1 —1}-1 v n—1 3
= coeff{é’—.[z ) '*a,(s)] } — —]-:Tu’l'(s)+1él h;(s)-af(s)+h(s)

where h;(s) (j=0,...,n—1) and h(s) are bounded and regular functions in the
halfplane Re s=3/4. The bound does not depend on T.
Let now T, be the set of those primes p for which g(p)=r;, p{L.

Then we get
™ A(s/p) _ s =
“20) T =4 0= 3 lpta0- Z 1P,
PtTl p PETf PEP g{p) r

where v,(s) is bounded and regular in Res=3/4.
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First we observe that

f 7y, (W) — ¢, 7 (u) du

l."s+l

- dnl’j(u) ]
(4.21) Spr=[——=c,log—+s

pGPz.. 0 0

and that the last integral is absolutely convergent in Re s=1 see (1.3). We estimate
the last sum in (4.20). Suppose that Res=1. Then

2 Y= 1p=log [] = c(Ly).
p/L, plly plly s
ap)=r;

p
Consequently the left side of (4.20) is equal to

(4.22) ¢, log +vy(s)+v(s/L, 1)

s—1
where v,(s) and ©(s/L,r;) are regular and bounded in Res=1, v,(s) does not
depend on L, and

v(s/L, r)| = c(Ly).
Hence, by (4.19) we get

e 2 i
(4.23) AL, S) = B(S)[IOg : ] + 2 t;(s, L) [Iog I ] s
s—1 j=0 s—1
where
t ({'
(4.24) B(S) = ”,—. v=v(S)=bL+...4+1,
j=1 -
and

[ti(s,L)] =< c(L,)" in Res=l.
For a fixed r let

(4.25) p = p(r) = maxv(s),

where u(r)=0 when R(r) is an empty set. The value of u does not depend on L.
Let

(4.26) Ay = n}_axu(f—g(L,)).

Suppose that A4,,>0. Then we get — see (4.23), (4.15), (4.14), (4.10) —
1 Ag Aﬂ—l 1 3
(4.27) H, (s) = A.(s) [log— + 3 B;(s) (log —] ’
ad - s—1 j=0 s—1

where the functions Ar(")* B;(s) are regular in Res=1, and Aﬂ(l)¢0.
By (4.6) we get

Am Y
G(s) = (s—1)" z‘; g;(S)'(IOSm] 5

2, (1) = 0.
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This relation holds for A4,,=0 too, since we assumed that g(n)=m has at
least one solution. Hence, by Lemma | we get:

for Co > 0
(4.28) N(x, m) ~ Bﬂx(log x)~ %~ (log log x)4m,
for ('9=0, AE::-O.
(4.29) N(x, m) ~ B, x(log x)~*(log log x)4=~1

where B, is a positive constant.

5. Theorem 1. On the assumption (1.3), by the notation (4.12), (4.24), (4.25),
(4.26) we get:
(1) If ¢=0 and there exists at least one solution of g(n)=m, then

N(x, m) ~ Bﬂx(log x)~“~1(log log x)4m.

Q) If c.l:0 and A,,_,:’O. then
N(x, m) ~ B,x(log x)~"(loglog x)4=~1,

B,, are suitable positive constants.

As it is easy to see from our result follows the assertion due to W. NARKIEWICZ
[2] concerning the divisibility properties of integer-valued multiplicative functions
defined as values of a polynomial for every prime.

6. Let fi(n), ..., fi(n) be multiplicative functions having positive integer
values. Let ¢,, ..., g, be arbitrary not necessarily distinct prime numbers. We define
g;(n) as the greatest o« for which ¢/ is a divisor of f;(n). It is clear that g;(n) are
additive functions having non-negative integer values.

Assuming that the relation (1.3) holds for

g(n) = (Zh("L f g gk(")),

we can use Theorem 1 to determine the asymptotic behaviour of

Nx,m)= 3 L
g(:)§=x£r

To illustrate our theorem we investigate the divisibility properties of the
Euler totient function.

Let ¢,<g¢y=...<q; be distinct primes. Let m=(x, a,, ..., %), %; be non-
negative integers. Let D=g¢g7...qi. We say that D is a total divisor of N, if D/N
and gr*YYN (i=1,.... k). We write then D|N. Let N,(x) denote the number of
n=x satisfying the relation D| n.
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Let rrﬂ{x) be the number of primes p not exceeding x for which D|p—1. Let
0=¢,...q.. We have

wmX)= 2 1=Ju@ 2 1= quﬂ(é)rr(x, éD, 1)

p=lmodD 810 p=1(mod Dé)
(Pgl’o)=1 psx

where in general n(x, k, /) denotes the number of primes p=x in the arithmetical
progression /(mod k). Using the prime number theorem for arithmetical pro-
gression see e.g. K. PRACHAR [3] we get

T (X) = Cplix+0 (x/(log x)*)

uniformly for D=(log x)'°, where

= u(9)
(6.1) Cm = % >(D3) "

Taking into account that
lix -
(X)) < ——— for D= Jx

and

rr,l,(x)«% for D=x

we deduce easily that (1.3) holds. Now

2 .. e
KAl - (% @ (d) ig ‘?1_1]

We see that ¢,=>0 if ¢,=2 and ¢,=0 if ¢,=2. Furthermore,

6 WO |
Thus from theorem 1 we immediately deduce

Theorem 2. (1) If ¢,=2, then

Np(x) ~ Bpx(log x)~<o~1(log log x)m* -+,
(2) If q,=2, a,=0, then Np(x)=1 for x=2.
3) If ¢,=2, y=1, then
Np(x) ~ Bpx(log x)~*(loglog x)=~1.
PrOOF. Assume that ¢,=2. Then ¢,>0 for every r, consequently

u(r)= the sum of the components of r
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(see (4.12), (4.25)). Since
A:l o~ Ej?lﬁ #(!'_Q(Ll))s

the maximum is taken for L,=1. Thus

A, =o,+... 4+,

and we can use Theorem 1.
Assume that ¢,=2. The assertion (2) is obvious, let x%,=>2. To prove (3)
we need take into account that ¢,=0 if and only if the first component of r is zero.

We have that A4,=x, and so we use Theorem 1.
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