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Let G be a p-group and F be a field of characteristic p. As well known there
only exists a finite number of indecomposable (F, G)-modules, if G is cyclic and
there are indecomposable (F, G)-modules of arbitrarily large dimension, if G is
non-cyclic (see [1], [3]). In this paper we are concerned with a special kind of in-
decomposable (F, G)-modules that is to say with (F, G)-modules possessing only
one maximal submodule, so called one-headed modules. We shall prove that there
exists only a finite number of one-headed (F, G)-modules provided that G is abelian;
moreover we shall construct a universal one-headed (F, G)-module the factor mo-
dules of which will cover all the possible one-headed (F, G)-modules.

Notations

H=G, H=G respectively means: H is a subgroup, proper subgroup of the
group G; ord a=order of the group element a; {(a)=cyclic group generated by a;
deg A =degree of the matrix A; rank A=rank of A; A>XB=Kronecker product
of matrices A, B; I=identity matrix; F denotes a field of characteristic p=0;
(M)p=submodule spanned over F by the subset M of an F-module.

Any matrix group G over F of order a power of p can be transformed in such
a manner that every matrix of G becomes the shape

1 oy Oy3... O1n
1 aga LS az,l
| By Ola,
(1) . :
0 I an—l.n
1

This follows from the fact that besides the l-representation there is no other
irreducible representation of G over F (see [2], p. 484).

Conversely all matrices (1) with coefficients in F form a group, the exponent
of which is the smallest power of p exceeding n—1.
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This shows that over F the order of A, is the smallest power of p being =n.
Further let

(2) T 0

Then the order of A, . as a matrix over F is the smallest power of p which is
=max {n,, ..., n,}.
Now we have the
Lemma 1. The following statements concerning a matrix A over a field of charac-
teristic p are equivalent:
(i) ord A is a power of p.

(11) All eigen-values of A are 1.
(i) A is similar to a matrix (2) (which is the Jordan normal form of A).

PROOF. (i)=>(ii). We already have seen that A is similar to a matrix of the

shape (1). Therefore all the eigen-values of A are I.
(ii)=>(ii1). If all the eigen-values of A are 1, then the Jordan normal form of

A is a matrix (2).
(iii)=(i). This has been noted above.

Corollary 1. A, is indecomposable over F.
PrROOF. Assume not, then A is over F similar to a matrix
A0
0B
with deg A=1, deg B=1. Since both matrices A, B only have eigen-values 1, their
Jordan normal forms are shaped like (2). Therefore A, is similar to a matrix
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A, ..m With s=2. It follows that A,—1I is similar to A, ., —1I and we find
n—Il=rank (A,—I)=rank (A,, . —D=n—s, which is impossible.

Corollary 2. If the matrix A over F has a power of p as its order, then deg A —
—rank (A—1) is the number of indecomposable constituents of A over F.

Corollary 3. All non similar indecomposable representations of a cyclic group
a) of order p™ over a field of characteristic p are given by

(3) 2 Q- Ans

where n=1, ...,p™ The kernel of the representation given by (3) is (a®), where

P l<=n=pt.

Corollary 4. Keeping the notation of the foregoing Corollary we can say that
the extension of (3) to a representation of the group algebra of (a) over F is faithful
if and only if n=p".

Proor. The relation
plﬂ_l

j=0

with coefficients #;¢€ F is equivalent to the system of linear equations
pul_ j :
2 4lil=0 (i=0,..,n-1)

If n=p™, this system admits a non trivial solution. But if n=p™ then there is only

the trivial solution, since the determinant det (;’ ] has value 1.

Now let G be a finite abelian group with the basis a,, ..., @, and let ord a;,=p™
for j=1,...,r. Given integers n,, ..., n, with 1=n;=p™ the mapping

4) A o B2 = ASENC L AR
is a representation of G over F. We may choose a basis
(3) .t With G =1,..,84 for f=1 ...r

of the underlying representation module M in such a manner that G acts
accordingly

Pl it T s

uh.....l',
© e =] . fpmm

L T =0

{F=1ucisT)

We often write M(n,, ..., n,) instead of M, indicating the dependence on n,, ..., n,.
Let us define a partial order between the u; _, by setting wu, _; before

r
uy, .. if =i, ...,i,=i,. We shall call 12; (n;—i;) the hight of u;

is only one element of hight O namely u, . Further we transfer this partial order
to the summands o, ; u, ; having a, ;=0 of an arbitrary element

(7) H= Z L 1 A

hid
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of M. So we may speak of the first, the second etc. summands of an element u< M.
By the hight of aw;  ; (x#0) we understand the hight of u; ;.

For an arbitrary element g=ay'...a;" of G with O=x;=p™ for j=1,...,1
we define the mapping

(8) LI Nl RN st et AT S R Ty

where the image at the right hand side is declared to be zero if i;+x;=n; for at
least one j. This mapping preserves the partial order if elements with image zero
are omitted. We may extend (8) to an F-operator-homomorphism of M by setting

(9) (2! 1:1 ,l, 11 J g e Z 111 ...,t,(“ll i,("g)-

Besides g let h=a}'...a with Oéyjf:p"'l for j=1,...,r be another element
of G. If x;+y;<p™ for j=1,...,r, then

uo(gh) = (uog)oh for ueM.
(6) and (9) yield

uoa; =ua;—u =u(a;—1) for ueM, j=1,...r

where (a;—1) is to be seen as an element of the group algebra of G over F. For
gcG, ucM we have

(ug)oa; = uga;,—ug =ua;g—ug = (ua;—u)g = (uoa,g.
Repeated application supplies
(ug)oh = (uoh)g for ueM, g heG.

i.e. the mapping w—~uog(uc M, gcG) also is G-operator-homomorphic.

For subsets M,EM, G,SG we define M,oG,= {uog|luc My, g<G,}. If
0#4ucM, 1#g€G, then uog has a smaller hight than », provided that wog=0.
Especially M,og is a proper (F, G)-submodule of M, if M, is an (F, G)-submodule
#0 of M.

Lemma 2. If N is an (F, G)-submodule of M containing an element (7) with
only one first summand = s dr Cliscan fo (2 ,...;,#0), then u;, . ; and all the ele-
ments (5) situated behind it in the pamal order are eiemenrs of N.

Proor. We apply induction on the hight k of the first summand u, of . If k=0
then w=uy=a,, .U, . . and we are ready. Now let k=0. The element uogq,
lies in N. It has like u precisely one first summand, provided that j<n,. This
summand is 2 ;4. ;+1,.. 5 and has a hight lower than that of u,. By taking
I=1,...,r as far as j,=n, and applying induction argument on each sum wogq,
it follows that all the basis elements situated properly behind «; in the partial

. . J1s eees Jr
order are contained in N. Whence u,€N and so u; _ ;€N.

Theorem 1. M(n,, ..., n,) possesses only one maximal (F, G)-submodule namely
the set of all elements (7) with «, _ ,=0.

ProoF. Clearly the set of sums (7) with «; ;=0 forms a proper submodule
N of M, which is admissible to F and G. Moreover N is maximal, because a module
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L with N=L=M must contain an element (7) with =z, ,#0, whence Lemma 2
yields L=M.,

Following a notation due to WIELANDT (see [4], p. 225), we will call a group
one-headed, if it has a unique maximal proper normal subgroup. A little more
generally one can define: N is one-headed in G, where N is a normal subgroup of
the group G, if the lattice of all the normal subgroups of G properly contained
in N has precisely one maximal element. A representation belonging to a one-
headed representation module we also will call one-headed.

Now we have the

Corollary. Every factor module of the (F, G)-module M(n,, ...,n,) is one-
headed and therefore indecomposable.

We shall see in Theorem 3 that by the factor modules of M(p™, ....p™) all
possible one-headed (F, G)-modules are obtainable.
As a dual to Theorem | we have

Theorem 2. M(n,, ...,n,) possesses only one minimal (F, G)-submodule namely
{z'uﬂl, sa M | uE F}

Proor. If N is a minimal (F, G)-submodule of M(n,, ...,n,), then NoG=0.
Therefore N contains no other elements than xuw, ., (x€F).

Theorem 3. Each (F, G)-module possessing only one maximal (F, G)-submodule
is isomorphic to a factor module of M(p™, ..., p™).

PrOOF. Let N be an (F, G)-module with only one maximal (F, G)-submodule
L. We choose an element of N outside L and sign it by v, _, with so many in-
dices 1, as the rank r of G states. Then we define elements v;, _ ; inductively by

. . m
t a; =0 i+, . 41,0 o i;<pP.

L DRTERY I

Employing the group algebra of (@) over F we also can write v, _; in the form

Uiyt = 0y,1(@— 1072 L (@, — 1)L,

| APy o

By reason of (a;—1)""/=0, we have

(a;— U’m"_l“j = (a;— 1)p™i—1
and so

Upm, ... .pmr@; = Up"'l. T

It follows that the F-submodule of N generated by the v;, ; admits G. This sub-
module must coincide with N, because otherwise it must lie in L, which implies
ty,...1€L a contradiction. The elements of G effect on the generators v;, ; of L
in the same manner as on the basis elements wu; _; of M(p™,...,p™). Hence

o ool R e
is an (F, G)-operator-homomorphism from M(p™, ...,p™) onto N, and con-
sequently L is isomorphic to a factor module of M(p™, ..., p™).
As an instance we notice

M@™, ..., ™)L = M(ny, ...,n,),
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where L is the submodule of M(p™, ..., p™) generated by all the elements which
are properly behind u,, _ , .

By means of the Corollary to Theorem 1 together with Theorem 3 the problem
of finding out all one-headed (F, G)-modules is reduced to the problem of putting
up all the factor modules of M(p™, ..., p™). In this paper we will not carry on the
investigation of these factor modules. We mention that generally there are more
than one non-equivalent faithful one-headed representations of an abelian group.
The kernel of the representation (4) coincides with (af*)x (af**)x ... X (a?*"),
where pt-'<n;=p4 for j=1,...,r, as to be seen by means of Corollary3 to
Lemma 1. Consequently all the modules M(n,, ...,n,) with p™~'=n;=p™ for
Jj=1....,r are representation modules of faithful representations of G.

We conclude with a remark on the possible form of a basis in a factor module
of J’vf(ﬂl._. e )

Theorem 4. Let N be a proper (F, G)-submodule of M=M(n,, ...,n,). Then
there exist chains of neighbouring elements (5) beginning with u, ., such that their
union is modulo N a basis of M over F.

Proor. All linear notions are related to the ground field F. We apply induc-
tion on the dimension of M/N. If this dimension is 1, then N coincides with the
single maximal submodule of M and the chain consisting of the element u,
has the wanted property. Now let M/N have a dimension larger than 1 and let
u;, ;. be a last element (5) not belonging to N. Putting L={u; .. Ny, we
have wu;  ; a€L (k=1,...,r), whence L is an (F, G)-module. By induction
argument there exist chains of neighbouring elements (5) beginning with u, .,
such that their union is a basis B of M mod L. Evidently u; _ ; is linearly in-
dependent on B mod N. Let B’ be the set of all immediate successors of the ele-
ments of B. If there exists in B” an element, which is linearly independent on B
mod N, then we are ready. We finally show, that the assumption, each element
of B’ depends linearly on B mod N, leads to a contradiction. Clearly «, _, is con-
nected with u; _ ; by a chain of neighbouring elements (5). A certain peace
Wos Wiy -ois W, of this chain has the property wo€B, w,€ B\ B, wy=u;, ;. There
exist elements gi€lay, ...,a,) with wog;=w,,, for i=I1,...,s—1. By assump-
tion we have a reprcscntation mod N of w, as a linear combination of elements
of B, say w,=/(B)mod N. From this we get w,og,=w,=/,(Bog) mod N. This
implies, since BogS BlUB’ and since by assumption each element of B” depends
linear mod N on B, a representation of w, as a linear combination w,=/(B) mod N.
Repeated application leads to a linear relation w,=/(8) mod N, which is im-
possible as mentioned above.
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