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The Alexandroff property for vector
lattices of real-valued functions

By WOLFGANG ADAMSKI (Miinchen)

Abstract. If X is a topological space, then a classical result of A.D. ALEXAN-
DROFF states that the class of o-smooth linear functionals defined on the vector lattice
of all bounded continuous real-valued functions on X is sequentially closed with respect
to pointwise convergence. It is the aim of this note to investigate this property for
arbitrary vector lattices of real-valued functions.

1. Introduction

In 1943 A.D. ALEXANDROFF proved that the class of g-smooth lin-
ear functionals defined on the vector lattice of all bounded continuous
real-valued functions on a topological space X is sequentially closed with
respect to pointwise convergence. In this note we study this property for
arbitrary vector lattices of real-valued functions defined on an abstract
set X. We first give a sufficient condition for this so-called Alexandroff
property. As an application of this general result we show that, for an
arbitrary d-lattice £ of subsets of X, the vector lattice of bounded L-
continuous functions has the Alexandroff property. In particular, if £ is
the family of closed subsets of a topological space X, we obtain Alexan-
droff’s classical theorem. On the other hand, if X is a metric space then
it is shown by an example that the vector lattices of bounded uniformly
continuous functions and bounded Lipschitz continuous functions on X do
not have the Alexandroff property, in general.

Now we fix the notation. N denotes the set of positive integers. The
set R of real numbers is always assumed to be equipped with the Euclidean
topology.

Let X be an arbitrary set and let P(X) be the power set of X. 1g
denotes the indicator function of a set @ € P(X). If f is a function defined
on X then we write f | @ for the restriction of f onto the subset @ of X.
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Let £ be a subset of P(X). L is said to be a lattice if 0, X € £ and
L is closed under finite intersections and finite unions. A lattice that is
closed under countable intersections is called a §-lattice. The lattice £
is said to be normal if, for any two disjoint sets L1, Lo € L, there exist
disjoint sets K;, Ky € L':={X — L : L € L} such that L; C K, for
i = 1,2. Furthermore, the lattice £ is called countably paracompact if, for
every decreasing sequence (L,) C £ with empty intersection, there exists
a sequence (G,,) of L'-sets with empty intersection such that L, C G,, for
all n € N. An L-step function is a finite linear combination of members of
{1L L e E}

For a sequence (f,) of real-valued functions on X we write f,, | 0 if
(fn) is decreasing (i.e. fn41 < f, for all n € N) and lim f,(x) = 0 for
every € X. An integral [ fdu is usually written as u(f).

If X is a topological space then C(X) [C*(X)] denotes the vector lat-
tice of all [bounded] continuous real-valued functions on X, and we write
F(X),K(X),B(X) for the collection of all closed, compact, Borel sets in
X, respectively.

2. The main results

Let X be an arbitrary nonvoid set and E C R¥ a vector lattice of
real-valued functions on X. E* denotes the algebraic dual of E, i.e. E* is
the family of all real-valued linear functions (= linear functionals) defined
on E. In addition, let Ey:={f € E: f > 0}.

Definition. ® € E* is said to be
(i) order-bounded if sup{|®(h)| : h € E, |h| < f} < oo for all
[ e FELy
(ii) monnegative if ®(f) > 0 whenever f € E;
(iii) o-smooth if im ®(f,,) = 0 for every sequence (f,,) in E with
fn 10O

The relations between these concepts are described in

Lemma 2.1 ([7], 2.3). (a) Every o-smooth ® € E* is order-bounded.

(b) ® € E* is order-bounded iff there are nonnegative ®,,®, € E*
such that ® = &1 — ®,. If, in addition, ¢ is o-smooth then ®1, P, can be
chosen to be o-smooth, too.

Define A(E):={® € E* : ® is order-bounded}, A, (E):={® € A(E) :
® is o-smooth}, I'(E):={® € E* : ® is nonnegative} and I',(E):={d €
I['(E) : ® is o-smooth}.
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In view of 2.1, I'(E) C A(E) and A, (E ) ={d ¢ E* ® is o-smooth}.

E is said to be a Daniell lattice ([1]) if ['(E) = T'x(E). It is obvious
that E is a Daniell lattice iff A(E) = A, (E).

If X is a topological space, then a classical result of A.D. Alexandroff
(see [2], Theorem 19.3, or [10], Theorem I1.19) states that A,(C*(X)) is
sequentially closed in A(C?(X)) with respect to pointwise convergence. In
the following we will investigate this property for arbitrary vector lattices
of real-valued functions.

Definition. We say that the vector lattice £ C RX has the Aleran-
droff property if, for every sequence (®,) in A,(E) and any ® € A(E),
lim ®@,,(f) = ®(f) for all f € E implies ® € A,(E).

It is trivial that every Daniell lattice has the Alexandroff property. A
deeper result is given in

Proposition 2.2. F has the Alexandroff property provided that E
satisfies the following condition:

(2.1) Iffi, fo,... € By and > fr € B, then » fy € E
keN keA

for all A € P(N).

PROOF. Let (®,) C A,(F) and ® € A(E) be such that lim ®,,(f) =
®(f) holds true for every f € E. To prove the o-smoothness of ® it suffices

to show ®( > fx) = Z O ( fr) for every sequence (fy) in Ey with > fx €
kEN keN

E. Let such a sequence (fx) be given. In view of (2.1), we can define
pn(A) =0, (> fr) and p(A):=d( > fi) for A € P(N)and n € N. (uy,)
keA keA

is a sequence of finite signed measures on P(N) satisfying lim yu,,(4) =
u(A) € R for all A € N. By Nikodym'’s theorem (see [6], II1.7. 4) L

also a signed measure on P(N). This implies Z O(fr) = ¥ Z fx) =
p({L,- . n}) — p(N) = ¢(k%fk) Le. &(3 fk:) Z (fk)- O

keN keN
If (X, A, 1) is a measure space and p € [1, 00), then it is an immediate
consequence of 2.2 that E:=L,(X, A, n) has the Alexandroff property.
We will now give another example of a vector lattice with the Alexan-
droff property. For this purpose consider a d-lattice £ of subsets of X. A
real-valued function f on X is said to be L-continuous if f~(F) € L for
all closed subsets F of R. Note that a function f € RX is £-continuous
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iff the sets {f > ¢} and {f < t} belong to £ for all ¢ € R. Define
C(L):={f € RX : f is L-continuous} and C°(L):={f € C(L) : f is
bounded}. Then C(£) and C’(L) are vector lattices containing the con-
stants [3].

Ezamples 2.3. (a) Let L be a o-algebra in X. Then C(L) [C*(L)] is
the family of all [bounded] £-measurable real-valued functions on X.

(b) If X is a topological space, then C(X) = C(F(X)) and C*(X) =
C*(F(X)).

Proposition 2.4. C°(L) has the Alexandroff property.

PROOF. We show that E:=C"(L) satisfies (2.1). Let (fi) C Ey with
f:= > fr € E be given. We must prove »_ fi € E for every infinite

keN keA
subset A of N. If N — A is finite, then )  fr=f— >, fr € E. Thus
k€A keN—A
we assume that both A and N — A are infinite. Let A = {nq,no,...}
with n; < ng < ... and N— A = {ry,ry,...} with 11 < ry < ....
ForanytERweobtain{kagt}: {ankgt}eﬁand
kEA meN (k=1
{kaZt}:{ > fk—fS—t}z {Zfrk—fﬁ—t}éﬁ-
keA keN—-A meN (k=1
Hence ) fi is L-continuous. O
keA

Remark 2.5. An analysis of the proof of 2.4 reveals that also C(£) has
the Alexandroff property. However, we know from [1], Corollary 2, that
C(L) is even a Daniell lattice.

From 2.3 and 2.4 we deduce

Corollary 2.6. (a) If L is a o-algebra in X, then the vector lattice of
all bounded L-measurable real-valued functions on X has the Alexandroff
property.

(b) If X is a topological space, then the vector lattice of all bounded
continuous real-valued functions on X has the Alexandroff property.

For a lattice £ of subsets of X we denote by MR(L) the family of all
bounded real-valued L-regular finitely additive measures defined on «(£),
the algebra generated by L£. Moreover, let MR(o, £):={p € MR(L) : p
is o-additive}. According to [8] (or [9]), a normal d-lattice £ is called
an Alezandrov lattice if, for every sequence (u,) in MR(o, L) and any
p € MR(L), im pi,, (f) = pu(f) for all f € C*(L) implies u € MR(a, £).
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It follows from 2.4 via the Alexandroff representation theorem ([2],
Theorem 7.1 combined with Theorem 10.1) that every countably para-
compact normal d-lattice is an Alexandrov lattice. (Observe that it is not
the complete normality of the lattice but the weaker property of count-
able paracompactness that is needed in the proof of [2], Theorem 10.1.)
The following example shows that the countable paracompactness is not
necessary for a normal d-lattice to be Alexandrov.

Example 2.7. Let L be a dé-lattice of subsets of X such that
(o) L — {0} is closed under finite intersections and
(8) L is not countably paracompact.

(Note that in case X =N, L:={{z e N:z >n}:n e N}U{0} is a
d-lattice satisfying the conditions («) and (3).)

In view of (), £ is normal vacuously. To prove that £ is an Alexan-
drov lattice we need two auxiliary results.

2.7.1. Let yp € MR(L) be nonnegative and nonzero. Then

(1) w(@)=0forallGe L —{X};
(2) p is 2-valued and not o-additive.

PRrROOF. (1) Let G € £' — {X} be given. For any L € £ with L C G,
we have L = () by (a) and hence u(G) =sup{u(L): L€ L,L C G} =0.

(2) If A € a(L) satisfies pu(A) > 0, then pu(A) = inf{u(G) : AC G €
L'} = u(X) where the last equality holds by (1). Thus p is 2-valued. In
view of (), there exists a sequence (L,,) of nonvoid L-sets decreasing to (.

Then X = |J G, where G,,:=X — L,, € L' — {X} and hence u(G,,) =0,
neN
n € N, by (1). Consequently, u is not o-additive.

2.7.2. If p1, po € MR(L) are nonnegative with p1(X) = pus(X), then
H1 = 2.

ProOOF. W.lo.g. let uq(X) = po(X) > 0. Assume p3 # pa. Then
w1 (A) # p2(A), say pu1(A) < pe(A) for some A € o(L). From 2.7.1 (2) we
infer 11 (A) =0, pa(A) = p2(X) > 0. Since py is L-regular, p1(G) = 0 for
some G € L' with A C G. Then G # X and hence p2(G) =0 by 2.7.1 (1)
which contradicts ps(A) > 0.
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2.7.3. L is an Alexandrov lattice.

PROOF. Let () C MR(0, L) and p € MR(L) satisfy lim pu,(f) =
u(f) for all f € C*(L). From 2.7.1 (2) we infer, using the Jordan decom-
position, p,, = 0 for all n € N and consequently u(f) = 0 for all f € C*(L).
In particular, for f = 1, we obtain u(X) = 0, ie. p(X) = p (X).
Now 2.7.2 implies u™ = p~. Thus =0 € MR(o, £). O

For the case of a o-algebra £ it is an immediate consequence of
NIkODYM’s theorem ([6], III.7.4), combined with the DANIELL-STONE
theorem ([4], Satz 39.4), that the vector lattice of all £-step functions has
the Alexandroff property. However, if £ is only an algebra, then the vector
lattice of all L-step functions does not have the Alexandroff property, in
general, as the following example shows.

Ezample 2.8. Let X be the set of nonnegative integers, £:={L C

X : Lor X — L is finite} and E the family of all £-step functions. For

L € L, define u(L):=0 or 1 according as L is finite or not. Then pu is a
k

finitely additive measure on the algebra L. For f € E, say f = Y a;1p,
i=1

k
with o; € Rand L; € L for i = 1,...,k, define ®(f):= > a;u(L;) and
i=1

. (f) ::}ln;jf(j), n € N. Then (®,) C To(E) and lim®,(f) = ®(f)

]_
for every f € E. However, ® is not o-smooth, since y fails to be og-additive
(cf. [4], Beispiel 39.4).

Next we will present two further examples of vector lattices that do not
have the Alexandroff property, in general. For this purpose we consider
a metric space (X,d). Recall that a real-valued function f on X is d-
Lipschitz continuous if there exists a constant ¢ € [0, 00) such that |f(z) —
f(y)| < cd(x,y) for all x,y € X. It is proved in [5] that the collection
BL(X,d) of all bounded d-Lipschitz continuous functions on X forms a
vector lattice. It is a sublattice of the vector lattice U(X, d) of all bounded
uniformly d-continuous real-valued functions on X. It will be shown that
neither U%(X,d) nor BL(X,d) do have the Alexandroff property, in gene-
ral.
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Ezample 2.9. Let Y :=R U {w} be the one-point compactification of
the real line R. Since Y is metrizable, there exists a metric d on Y com-
patible with the topology of Y. Then (R,d) is a separable metric space
that is not complete.

For n € N, let P, be the normal distribution with expectation 0
and variance n. Defining @, (B):=P,(BNR) for B € B(Y) and n € N,
we obtain a sequence (@) of probability measures on B(Y). If K €
K(R), then K has finite Lebesgue measure A\(K) and hence P,(K) =

(2mn) =12 [ exp (— x2> dx < (27n)~Y2X\(K) — 0 for n — oo which im-

2n
plies limsup @, (F) < 1lp(w) for all FF € F(Y) = K(Y). Thus, by the
portmanteau theorem ([5], 11.1.1),

(2.2) lim @, (f) = f(w) forall feC(Y).

Now define T(f):=f|R for f € C(Y). T is a bijection from C(Y")
onto U*(R,d). From (2.2) we infer P,(T(f)) = Qn(f) — f(w) for f €
C(Y), hence P,(g) = Q.(T7'(g)) — ®(9):=T"(g)(w) for g € U*(R,d).
Observe that P, € T'x(U(R,d)), n € N, and ® € I'(U’(R,d)). To prove
that U°(R,d) fails to have the Alexandroff property, it suffices to show
® ¢ I';(U(R,d)). For this purpose, define g, (¢) := max (0, min (1, 1[¢]))
for t € R as well as f,(z):=gn(x) for x € R and f,(w):=1, n € N. It
is easy to see that f,, is continuous and so g, = T(f,) € U*(R,d). Since
gn 1 0 and ®(g,) = fn(w) =1 for every n € N, ® is not o-smooth.

Furthermore, by [5], 11.2.4, there exists a function h, € BL(Y,d)
satisfying h, > 0 and |f.(y) — hn(y)] < 27" for all y € Y. Then
Uy := min(hy, ..., h,) € BL(Y,d) and T'(v,) = v,|/R | 0. On the other
hand, h,(w) > fn(w) —27™ > 1 and hence ®(T(vy,)) = vp(w) > § for
all n € N. As T'(v,) € BL(R,d), n € N, we have shown that ®| BL(R, d)
is not o-smooth. Consequently, BL(RR,d) does not have the Alexandroff
property, too.
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