On differentiable iteration groups

By MAREK CEZARY ZDUN (Katowice)

In the present paper we shall give some properties of differentiable and convex
iteration groups.

Let the function f fulfil the following hypothesis:
(A) f is defined, continuous and strictly increasing in the interval

J=[0,a] and 0 <f(x)<=x for x¢€(0,a).

Definition 1. (cf. [4], [8], [10]). A one-parameter family of functions {f*, t¢
3(— ==, =)} is called to be an iteration group of the function f/ with respect to zero,
provided the following conditions are fulfilled:

1° for every 1€(— <, =) the function f* is defined in an interval [0, §,] where
3,>~0 and §,=a, for r=0,

2° for every pair s, t€(—o=, =)

(1 L) =)
holds for every x for which both sides are meaningful,
. fYx)=f(x) for x€[0,al

Remark 1. (cf. [10], [6]). If {f*, t€(-e=, e=)} is an iteration group of the func-
tion f with respect to zero and f fulfil assumption (A) and if for an x€(0, @] the

function f*(x) is continuous in [0, <), then the function A(7) L f*(a), for t€[0, =)
is continuous, strictly decreasing in [0, =), & [[0, =)]=(0,a] and

h(t+h=1(x)), x€(0,a], t=-—h"1(x)
(2) fi(x) = { ( ) ] (

0, =1k
The above iteration group as a function of two variables is defined in the set
(3) D =[0,a]X[0, =) U{(x,1): t <0, 0 = x = h(—1)}

and it 1s continuous in D.

§ 1. We shall deal with the differentiable iteration groups. Let us start with
two definitions:

Definition 2. An iteration group of the function f with respect to zero
{f', 1€(— ==, =)} is called to be of the class C} if the function F(x,r)=f"(x) has
continuous partial derivatives F;, F, except on the line x=0.
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Definition 3. An iteration group {f*, t€(— ==, =)} of the function f with respect
to zero is called to be of the class C1 if it is of class C} and f(x) has the partial
derivatives on the line x=0 being continuous with respect to each variable.

In all theorems the following general hypothesis is assumed: (H) {f',t€
€(—eo, o)} is an iteration group of the function f with respect to zero and f
satisfies hypothesis (A).

Throught this note A denotes the function defined by the formula

(4) h(t) < f(a), t=0.

Theorem 1. The following equivalences hold:
(i) For every x<€(0, a] there exists the limit Ifin‘} fUx)=x iff h is continuous in

[09 m]
(i1) f*(x) is differentiable with respect to t at zero for every x¢(0,a] i.e. there
exists the limit
i fl(x)_x s (}_f‘(X)

(3 lim -=—; = _ug g(x), x€[0,a]

iff h is differentiable in [0, «=). Then g(x)=0 for x€(0, a] and g(0)=0.

PrOOF. (i) Let 4 be continuous. Then, on account of Remark 1, there exists
an s=0 such that x=/*(a). From the definition of # we have h(t+s)=f""%(a)=
=f"(f*(@)=f"(x) where [t|<d for an 6=0. Hence lim f'(x)=h(s)=x. If
x=0, then f*0)=0. o

Conversely, if lrin'}f'(x):x, for x€(0, a], then ',i“:} h(!+s)=l'in|}f'(f‘(a))=
= f*(a)=h(s), for s=0.

(ii) If there exists the derivative (5) in J, then Irin'} S"(x)=x in J, so h is con-
tinuous. From Remark 1 it follows that f'(x)=/h(t+h"'(x)). Hence we have

f'(.;c)—x e h(t+h(x))—h(h~(x)) _

=0 !

(6) lim

o]

The existence of one of these limits implies the existence of the other one.
Hence h is differentiable in [0, <), since A~1[(0, a]]=][0, <=).

Conversely, if 4 is differentiable, then f*(x)=h(t+h'(x)) whence, by rela-
tion (6) f' is differentiable at 0 with respect to ¢ then, by Remark 1, we have
f(x)=x for x€(0, a), so g(x)=0 in J.

AT
Corollary 1. If there exists the derivative dfat(x) t'=g(x) in J, then
1=
(7) g(h(1)) = W(1), t€[0, ).

PrOOF. From Theorem 1, h is differentiable. Moreover we have g(h(r))=
5 gt s+1 e R 2
=“mf (h(fl) hm:limf (a) f(a)zlim h(f+-;) h(t) —K (D).

50 s 50

§=0
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‘Theorem 2. The following equivalences hold:

. e TR . : . :
(1) There exists the derivative (fa (‘)L_o=g (x) being continuous in J iff

heC[0, )] and lim K (1)=0.

Jf'(x)

(ii) There exists the derivative 5

ﬂ=g(_x) being continuous in J and
s

differentiable at zero iff he C'[[0, ==)] and there exists the finite limit llim %(—E;—)=y
(then y=g’(0)).

Proor. Equivalence (i) follows immediately from Corollary 1 and Theorem 1 (ii).
Equivalence (ii) follows from (i) and from the relations

N _ o g(B@) o H()
£2'(0) = lim =— = ’l_l.m Y 'llrz-} e

since the existence of one of these limits implies the existence of the other ones.

f*(x)
ot
Then for every x€[0, a) f'(x) is differentiable with respect to t in [—h~'(x), =) and

') T 4 LS
PO & PO _ o)

If f'(x) is differentiable at x, for a t, then
If" (x)
ox
In particular, if [ is differentiable in J, then

(10) g(f(x) =f(x)g(x), for xeJ.
PROOF. (See also [2], [3].) By the definition of g we have
S ) =) SHE-1) _ )
s s T ds
If f'(x) is differentiable with respect to x at x, for a 7, then in view of (5)

L)~ ) _
s

Theorem 3. Suppose that there exists the derivative _0=g(x) in J.

(8)

9) 2(f"(xy)) =

g(xy).

X=Xg

=0

g(f"(x) = lim

g(f'(xy) = i‘ﬂ}

i L) =1 ) L)% _ [

e J*(x0)— Xy s X

8 (xo},

X=Xy

since Iimu S (xo)=x,.
§—
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At
Corollary 2. Suppose that there exists the derivative o 3?) 0=g(x) in J.
=
Then:

(i) g(xo)=0 for an x,€(0, a] iff for any s=—h""(x,) there exists the deriva-
I*(x)
0x

tive W
(i) g is continuous in J and g(x)<0 for x¢(0,a] iff {f*, t6(—==, =)} is of
class Cj.

PrOOF. (i). If g(x,)#0 and x,#0, then in view of (7) A’(h~'(x,))=0, so the
formula f*(x)=h(t+h"'(x)) implies that for r=—h"1(xy), f'(x) is differentiable
with respect to x at x,.

Conversely, let f*(x) be differentiable at x, for r=—h"'(x,) and g(x,)=0.
Then, on account of (9), g(f"(x,))=0 for t=—h"'(x,). Since f'(x,)=
=h(t+h7'(x,)) and h[[0, =)]=(0,a]. we get g(x)=0 in J, but this is im-
possible.

Equivalence (ii) follows immediately from (i) and Theorem 3.

af ' (x)
ot
then there exists the derivative f’(x,). However, the converse theorem is not true.
There exists an iteration group of the function f(x)=sx for x€[0, 1], where
of'(x)
ot

Remark 2. If there exists the derivative

0=g(x) in J and g(x,)=0,
t=

0=s=1 such that there exists the derivative

0=g(x) in J and g(x,)=0
=

for an x,=0.
In fact, there exists a function /4 strictly decreasing, positive and differentiable
in [0, ==) satisfying the equation

h(t+1) = sh(t). for 1€[0, =)

and such that 4(0)=1 and A'(0)=0 (see [4]).
The function & defines an iteration group of f by formula (2). This group

(?frgx)r_":g(x) and g(f?(n))=0 for all

has the property that there exists 3

integers n=0.

af"'(x)

Theorem 4. Suppose that there exists the derivative py 0=‘_p;(x) being
r=

continuous in J, g(x)<0 for x€(0, a] and g is differentiable at zero *). Then f*(0)=
_Of* (%)
T oox

tion group {f',1c(—o=, =)} is of class C}.

_,TexPS g O)=[f (0. If moreover — =g’ (0)#0, then the itera-

ProOOF. We may assume that s=0, since f~*=(/f*)"' in a neighbourhood of
zero, and f°(x)=x in J. From Theorem 2 (i) and Corollary 1 it follows that

) We admit &' (0)=— (exp(-=) £ 0).
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In h€ CY[[0, ==)], where Ah(t)=f"(a). Then in view of Lagrange theorem, for any
t=0 there exists an @,¢(0,s) such that

Inh(t+s)—Inh(t)  h'(1+0,)

s ~ h(t+0,)’
Furthermore, according to Theorem 2 (ii) we infer that there exists the limit

s B
SO

o HE+0)
R Gy S

Consequently
(12) ,]lrﬂ In h’fr(;; . 'lllj_'_} (In h(t+s)—In h(1)) = sg’(0),
whence f*(0)=expsg’(0). For s=1 we have f'(0)=expg’(0), then /f*(0)=
=ff(0)$

Let —e<<g’(0)£0. By Corollary 2 (ii), {f":1€(—==, =)} is of class Cj.
Moreover, we have shown above that f'(x) is differentiable with respect to ¢ on
the line x=0. By (11) and (12), we have the relation

oo OPE) W hs s vk HISERTMN)) . WO
b= am f* (x) = lim W) lim N

- | W(t+s) h(t+s) h(r) . h(t+s) .. h(t+s) h(1)

= e h(ts) Q) h'{r) N el e D,

d ]
= £ O) o5 = 1@ = 0y = L
X x=0
The above limits exist, since g (0).:ﬁ0.
Moreover, ltm fs(x}—li_r-'l}g[f"(_x)):o. and dj:;;x) _“EO. Hence {f', t¢

€(— =, o)} is of class C.
Theorem 5. (Cf. [1], [2).) The function h defined by (4) satisfies the equation
f(h(D) = h(t+1), for t€][0, =).

If h is continuous, then there exists the inverse function o(x)=h""(x) defined in
(0, @) and satisfies the Abel equation

a(f(x)) = a(x)+1 for x€(0,a].

9t (x
If there exists the derivative (f:;f\} _0=g(x)-c0 in (0.a). then « is differentiable,

o’ (x)=0 in (0.a) and
g(x) = 1/a'(x), for x€(0,a).
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Now, our assertion follows directly from Remark 1 and Corollary 1.

Theorem 6. Let g be defined and continuous in [0, a], g(x)<0, for x<(0, a]
and let the integral

Y du
k= .;f g(u)

diverge. Then there exists exactly one iteration group {f',tc(—==, =)} of class C}
of a function f satisfying hypothesis (A) such that

of(x)|
6 rog o g(x) for x€]0, al.

Conversely, if {f',1€(— <=, <)} is an iteration group of class C§ of a function [
satisfyving (A), then integral (13) diverges, where g is given by (14).

(14)

PRrOOF. It is easy to verify, that the function f'(x) defined by formula (2) where
h is a solution of a differential equation (7) such that /(0)=a, is an iteration group
satisfying the conditions of our theorem. The uniqueness follows from Remark |
and Corollary 1, since equation (7) has exactly one solution in [0, =) such that
h(0)=a.

Conversely, if {f", té(—e=, ==)} is an iteration group of class C} of a function

of'(x)
t

1 satisfying hypothesis (A) then by Corollaries 2 (ii) and 1, 3 '“0=g(x)=-:0,

for x€(0, a] and
(15) )= - f

du

g(u)

where h(1)=f"(a). Hence integral (13) diverges in virtue of the fact that
ljrqjh“(x_):oo.

for x€(0, a],

Remark 3. (Cf. [2], [3].) If {f", t€(—==, =)} is of class C§, then
I (x) I (x)
T e
in Int D, where D is given by (3).

This equation follows directly from Theorem 3.
We have also the converse

g2(x)

Theorem 7. If g is continuous in J, g(x)=0, for x€(0, a), g(0)=0 and integral
(13) diverges, then there exists exactly one function F continuous in the set D (given
by (3) where h™' is defined by (15)) and of class C" in Int D such that
OF(x,1)  oF(x,1)

o ox

and F(x,0)=x for x€[0, a]. This solution F is an iteration group of class C} such

(}Ff;. ! _o=8() inJand F(x,1)=f(x) fulfils hypothesis (A).

(16) g(x), (x,0)eIntD

that
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ProoF. From Theorem 6 and Remark 3 it follows that there exists an iteration
group {f", 1€(—<e, =)} fulfilling hypothesis (H) of class C§ defined in D and
satisfying equation (16).

For every point (x,, #,)€Int D there exists exactly one solution z of the
equation

(17) Z'(1) =—g(z(1)

defined in the interval (— ==, #,], such that z(#))=x,. This solution may be uniquely
extended to a point (io,a)EFrD where 7,=0 and 7,=¢,. From the definition
of the set D it follows that (z(r), )€ D for t=i,. If the functions F, and F; of class
C! in Int D satisfy equation (16) and F;(x,0)=x for i=1,2 in [0, a)], then F=
=F,—F, also satisfies equation (16) and F(x,0)=0 in [0, a]. Hence by (17) we
have that F(z(7),1)=0 for t=i,, so F(xy,1,)=0 and consequently F=0 in D.
Thus it follows the uniqueness of solutions of equation (16) in D.

Theorem 8. Let f'(x,) be continuous for an x,€ (0, a] in [0, ==). If one of the
Sunctions
S'(x )

gi(x) = hm n Sup-———o, 2,(x) = llm n sup L2~ J'(x ) x

f f‘(xl)_x f .f'(x‘)_x

g5(x) = limin , g(x) =limin

f'( )

is continuous in [0, a), then there exists the derivative

:g(x) continuous in J.

PROOF. Let g, be continuous in [0, @]. In view of Remark 1, the continuity of
f*(x,) in [0, =) for an x,€(0, a] implies that f*(x) is given by formula (2). Then

f‘(xr)_xmlimsu h(t+h=(x))—h(h='(x)) _

t—=0+ I3

g(x) = lim sup = D*h(h™'(x)),

where D*h denotes the Dini derivative of 4. Hence we have the relation
gi(h(t)) = D*h(r) for r=0.

Then D*h is continuous in [0, ==). Further, on account of Lebesgue theorem
(see [5] p. 184), A is absolutely continuous, whence D*h=Ah" a.e. in [0, ==). More-
over, we have

h(s) =f’h’(r)dt =f5+h(:)dr.
0 0

Hence, by the continuity of D*A in [0, =), & is of class C! in [0, ). Then, by
of'(x
fBE )'=u=g(x) and g=g;.

§ 2. In the present section we are concerned with the convex iteration groups.

Theorem 1 (ii), there exists

Definition 4. (See [8]) An iteration group {f*,1€(—<, =)} with respect to
zero is called to be convex (concave) if for any 7=0 the functions are convex
(concave).
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Now we give a short“proof of a generalization of A. Smajdor’s result

(see [9]).
o' (x)!
t |t=0

Theorem 9. Suppose that there exists the derivative )

=g(x) in J.

Then {f*,t€(— <=, =)} is a convex (concave) iteration group iff g is convex (con-
cave) in J.

of'(x
-:f—agf*). !-0=g(x)

ProOOF. If {f', t€(—o==, =)} is a convex iteration group and

in J, then
g(x) = lim (fY"(x)—x)n, xe€J.

Hence, g is convex as a limit of convex functions.

Conversely, let g be convex. Then the right-hand side derivative g7, is increasing
in J, as well as g is continuous in J and g(x)<0 for x€(0, a]. Hence by Theorem 3
and Corollary 2 we have

(18) af({f‘) » gg(;(;‘)) & G,(x), for x€(0,al.

We are going to show that G, is increasing for any s=0. Let s=0. G is
continuous in (0, @] and right-hand side differentiable in (0, @). Applying formula
(18) we get

D807 ¢ ) g2’ ()
Gg, (x) = g(x)? s
’ 3 g(fs(x)) £y ] ’
_ U0 08080 (e (re)-se]

g(x)? ! g(x)?*

Since g(x)<0, f*(x)=x for x€(0,a] and g’ is increasing, we get G;+(x)=0
in (0, a). Hence G, is increasing in (0, @) in virtue of Zygmund’s lemma (see [5] p.
182). Since G,=f*, the function f* is convex in (0, a). Moreover f* is continuous
at 0 and a, whence f* is convex in J.
The proof for the concave iteration group is the same.
" (x)
or

If f'(x,) is convex as a function of t for an x,€(0, a] then g is decreasing in J. If g
is decreasing in J then for every x,€(0,a]f'(x,) is convex.

Theorem 10. Suppose that there exists the derivative

=g(x) in J.
t=0

PrOOF. From Theorem 3 (formula (8)) it follows that f*(x,) is convex with
respect to ¢ iff g(f*(x,)) is increasing with respect to r. This condition holds iff
g is decreasing, since f*(x,) is decreasing and f(x,) maps the interval [—/4~1(x,), =)
onto (0, a], where h(t)=f"(a).

Theorem 11. There does not exist an iteration group {f',t€(—o=, =)} with
respect to zero of the function f fulfilling assumption (A) such that there exists the
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o (x)
ot le=o
two variables is convex in (0, a]<[0, =<).

derivative =g(x) being differentiable at (0, a) and f'(x) as a function of

PrROOF. Suppose that F(x,1) - ff(x) is convex in [0, a]X[0, =) where
{f', te(—==, =)} satisfies assumption of our theorem. F is convex with respect
to each variable. On account of Theorem 9 and 10 g is convex and decreasing in
(0, a] as well as g(x)<0 for x€(0, a]. Moreover g is of class C! in (0, a], since g
is differentiable and convex in (0, @]. Therefore, Theorem 3 implies that there exist
the continuous derivatives

oF (x, 1)
ot
whence it follows that F is of class C? in (0, a]X(0, ).

Applying the criterion of convexity of functions of two variables (see [7] th. 4.5)
we get that the matrix

OF(x. 1y g(F(x,1)
ox - )

= g(F(x,7)) and

]

PF(x,1) 0*F(x,1)

or* ot dx
?*F(x,t) *F(x,1)
ox ot ox?

is nonnegatively defined for x€(0,a] and 7€(0, ==).
For our function F this is impossible. In fact, using the formulas (8) and (9)
we get
*F(x,1) 0*F(x,1)

or* ot dx i
PF(x,1)  *F(x, 1)
ox ot ox?
T g g (f"(x)g(f (x)
) g'(f (x)g(f (x)) () )
g'(f' (x)eg(f () (S (x)e(f(x)—g(f*(x)g'(x)
g(x) g(x)*
—g(f' @R/ ) _ 0.

g(x)*
since g’(x)=0 in J as a derivative of decreasing function.

Remark 4. If {f',1€(—==, =)} is a convex (concave) iteration group and
" (x)
ot

there exists the derivative

n=g(x) in J such that g’(0)=0, then
t=

{/", t€(— =, =)} is of class C}.

In fact, from Theorem 9 it follows that g is convex (concave), whence g is con-
tinuous, g(x)=0 for x€(0, @) and there exists the derivative g’(0)=0. Now, our
assertion results from Theorem 4.

8§ D
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