Some problems of characterization of normal distribution

By BELA GLEVITZKY (Debrecen)

1. Introduction

Consider two random variables ¢ and n and assume that the conditional
expectation E(n/S) exists. We say that n has polynomial regression of order k on
¢ if the relation

(1.1) EM|E) = Bo+Prl+...+ B E

holds almost everywhere. Suppose that the first moment of » and the k-th moment
of ¢ exist. It follows from (1.1) that

(1.2) E@m) = Bo+PLE(D)+ ...+ B E(EY).

The coefficients f,, B, ..., B, are called the regression coefficients. If k=0, ie.
if the relation E(n/¢)=E(n) holds almost everywhere, then we say that n has
constant regression on &, If k=1 and B,#0 (k=2 and p,=0) then we speak of
linear (quadratic) regression.

In this paper we discusse some characterization problems of normal distribu-
tion. They are connected with constant, linear and quadratic regression.

We shall need the following theorem.

Theorem 1.1. ([2], p. 103, Theorem 6.1.1.) Let & and n be two random variables
and suppose that the expectations E(n) and E(&*) exists where k is a nonnegative
integer. The random variable n has polynomial regression of order k on & if, and only
if, the relation

k

(1.3) E(me*™)= 2 B,E(&’e*)
j=0

holds for all real 1. :

2. Characterization of normal distribution by constant regression
of a quadratic statistic on a linear one

Let R, be the n-dimensional vector (column) space. If v€R,, then v™ stands
for the transpose of v. a€ R, is the vector with all components equal to 1.

Let the components of the random vector {=(¢;)€ R, be independent, identically
distributed random variables. Let

2.1 A= 2 &, a=(x)ER,, %0, i=1..,n

i=1

s‘
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be a linear,

n n
(2.2) szaijéicj'f‘kz;bk:ks a;€Ry, b;eRy, i,j=1,...,n

L j=1
be a quadratic statistics. We prove now the following theorem.

Theorem 2.1. Let the distribution function of ¢; be F(x) and assume that F(x)
has a finite second moment. Put

I:(aJ)ERn* aj#os b:(bj)eR;n A =(ajk)| ajkEth J't!\ - L---sn-
Suppose that

(2.3) (xa+ya)*A(xa+ya) = 0,

(2.4) S, =ay9+...+a,2#0, v=1,2, ...,
(2.5) Se=0

(2.6) P, =baf+...+baf =0, u=0,1.

Then (2.2) has constant regression on (2.1) if, and only if F(x) is the normal distribu-
tion function.

First we prove the following lemma.

Lemma 2.1. Denote the characteristic function of F(x) by f(2). If (2.2) has con-
stant regression on (2.1), then f(t) satisfies the differential equation

n

j;";a”f”“zjl)kgﬂakt)_ Z,af"f’(“f’)f’(“kf) ;é Sfloyn)—

J k=
kv j ik I#j,1#k

2.7)
—1 D B,f" (a;r)kfg fo) = kﬁl f (o 1) (By*+ Bym?*+ Bym).
j=1 = -

k#j

Moreover, in a neighbourhood of the origin, in which f(x;t)=0 (j=1,2,....n),
the second characteristic @(t)=Inf(t) satisfies the differential equation

(2.8)

n n n
—jZl'aﬂ(p”(aJ-r)—jkZ'lajkgo'(a:jt)(p'(m,‘!)—ijZ b;¢’(a;t) = Byo*+B,m*+Bym
= K= =1

where
n n n
Bl=ZajJ', B-z: Z aj,‘, BS= ij.
Jj=1 Jik=1 j=1

PROOF of lemma 2.1. As (2.2) has constant regression on (2.1)

E(Qe"") = E(Q)E(e"")

holds for all real r€R,. Since ¢; has a finite second moment, we may differentiate
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the characteristic function f(7) twice and get
(2.10) f1(1) = iE(§;e")
(2.11) f7(1) =—E(£}e*).
From these we obtain
EQe) =~ 3 ayf" ;) IT fi)-
k= j

(2.12)

— Z apf (o;0f () [T fly)—i Z b;f (a;0) [T flaed).
Jk=1 =1 =1 k=1
i#k I+ j, 15k ks j

Upon replacements and the equations

E@) =[] @)
(2.13) o

EQ = Ja,ot+ 3 agmi+m 3b,
ji=1 J k=1 j=1

we obtain the differential equation (2.7).
Moreover, in a neighbourhood of the origin, in which f(x;7)#0 (j=1,2, ..., n),

let us divide both sides of (2.7) by Hf(ajt) and introduce ¢@(z)=In f(¢t). Then
we obtain the differential equation (2 8) from (2.7).

PROOF of theorem 2.1. It follows from (2.3), (2.4) and

n
nJ8- 3 &4=0
i=1

that
" 1 n n b ]
= - a", & + E
Q n!(kl,_‘_,x,‘;gp,‘ £.12=.I ékigh jgll jGt,
(the adjoint polynomial statistic of Q) is nonnegative. Then ([3], Theorem 4) the
characteristic function f(t) is an entire function and ¢(«;t) (j=1,....,n) is an
analytic function in the interval |x;7|<d (6=0). This indicates that ¢(«;7) satisfies
the differential equation (2.8). If we put in (2.8) =0 and use (2.3), (2.4), (2.5),
we obtain

(2.14) ¢"(0) = —a*.
Now we show that
(2.15) @) =0

for all s=3. Differentiating both sides of (2.8) and then putting r=0 we have

(2.16) " (0) Za“ 2, = ¢'(0)p"(0) [J éla,-kmﬁjkz;a,-kak]—<p”(0)-f1§':b,-a,-.
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Replacing the relations (2.3), (2.4), (2.6) into (2.16) we see easily that
(2.17) " (0)=0.

Now we differentiate both sides of (2.8) twice and then put #=0 and use the
relations (2.3), (2.4) and (2.17), we get

(2.18) @™ (0) = 0.

We prove (2.15) by induction. Let us suppose that (2.15) holds for s=3,4, ..., v+1.
We show that (2.15) is valid for s=v+2,

Differentiate both sides of (2.8) v times (v=3) and then put ¢=0. We have
that

(2.19)
(,0‘"*2](0) S, =— Z Z"' 2\" [ ;‘] (,0“*“(0)(9“‘”‘“(0)0:_';0(1’"-@"*“(0) o j‘ b;ﬂt}"'l.
{ ji=1

n
j=1k=1i=0

Since v=3, max {/{+1,v+1—/}=3. Therefore the right-hand side of (2.19) is
equal to zero. We use (2.3) and get

e +2(0) = 0.

This completes the proof of (2.15).
Since @(a;t) (j=1,2,...,n) is an analytic function in the interval |x;t|<0d,
therefore in this interval the equation

242

p(t) =— 02’ +at+b,

where @ and b are complex constants is valid. As @(0)=0 and @(—¢)=¢(t) thus
b=0,a=im me R, and
242

o =—=5

3 +im 1

Since f(r) is an entire characteristic function, the equation

f(t) = exp {-—?-ﬁ-im r}

is valid for 7€R; and so &; is normally distributed.

On the other hand the characteristic function of the normal distribution satisfies
the differential equation (2.7). We put in (2.7) equations (2.12) and (2.13) and obtain
that (2.2) has constant regression on (2.1).
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3. A characterization of normal distribution by linear regression
of quadratic statistics on linear one

Let the components of the random vector {=(¢;)€ R, be independent random
variables with common distribution function F(x) which has moments of all orders.
Let m be expectation and let ¢ be the variance of the distribution F(x).

Theorem 3.1. Let
I:(Ij)eRns Ij:éol b:(bj)ERnn A =(ajk)9 ajkERI; j,k—_-], ...,n.
Suppose that

3.1) (xa+yx)*A(xa+yx) = 0,
(3.2) Sy =an+...+a,0m#0, [v=1,2,..],
(33) Sn 7 0|

J= =
(3.5) 2: (ﬁlaj_bj)aj =0,

§
(3.6) o= "i
2 ay

i=1
Then (2.2) has linear regression on (2.1) if, and only if F(x) is the normal distribution.
The proof will be based on the following lemma.

Lemma 3.1. First let us denote again by f(t) the characteristic function of F(x)
and suppose that F(x) has a finite second moment. If (2.2) has linear regression on
(2.1) then f(t) satisfies the differential equation

g Z a;‘;‘f”(:‘jf) ﬁf(.ak!)“ 2 ajkf’(ak")f'(ajn I f(ut)+
j=1 k=1 Jik=1 =1
ko j Jk 1% j, 1%k

(3.7)
+i ;"; (ﬁl'-‘j—bj)f’(“ﬂ)kg':f(*u') = B, i Sf(aj0).

k= j

Moreover, in a neighbourhood of the origin, in which f(x;1)=0 (j=1,2,...,n),
the second characteristic @(t)=In f(1) satisfies the differential equation

(3.8) —_Z"!ah«p”uj:)— kz
P =

PROOF of lemma 3.1. If (2.2) has linear regression on (2.1) then

(3.9 E(Qe"") = ByE(e"") + By E(Ae™)

ajk‘p'('xjr)(P'(ak’)‘l‘ijZ; (Bra;—b)) @ (a;1) = Py.

jk=1
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holds for all real 7€ R,. Since F(x) has a finite second moment we may differentiate
the characteristic function f(r) twice and thus (2.10) and (2.11) are valid. We use
(2.12) and the equations

(3.10) E(Aety = — 3 a,f"(a;0) JT fle)
i k)
(3.11) E@) = [ )
!

and get the differential equation (3.7).
In a neighbourhood of the origin, in which f(x;7)=0 (j=1,2,....n) let us

divide both sides of (3.7) by [J f(z;t) and introduce ¢(t)=In f(¢). Then (3.8)
]
follows from (3.7). x

PROOF of theorem 3.1. The proof is similar to the proof of theorem 2.1. It is
easy to see that Q@ is a nonnegative polynomial statistic. Then ([1], Theorem 4)
the characteristic function f(f) is an entire function and o@(x;7) (j=1,2,...,n)
is an analytic function in the interval |x;¢|<d (6=0). This indicated that ¢(x;?)
satisfies (3.8).

Similarly to the proof of theorem 2.1. we obtain that

(3.12) ¢"(0) =—¢*
and
(3.13) ¢*(0) =0, 5=3,4,....

Since @(a;7) (j=1,2,...,n) is an analytic function in the interval |x;7|<3d,
therefore in this interval

—m2g2
(3.14) () = —g——f-+im 1.
Since f(t) is an entire characteristic function it should have the form
-
(3.15) f(r):exp{ 3 +1mr}

for all 7€ R,. Therefore F(x) is the normal distribution.
The final steps are analogous to that of theorem 2.1.

4. Characterization by quadratic regression of a quadratic
statistic on a linear one

We shall keep the notations and suppositions introduced in section 3. Addi-
tionally assume that f(#) is an entire characteristic function.

Theorem 4.1. Let
o= (x)ER,, a;#0, b= (b)ER,, A= (ay), apcR,, jk=1,...n
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Suppose that

4.1) R,= 3 (hat—ay)a} =0, v=0,1,2,...,
T3
(4.2) ¥4 (Bazjuy—ay) = 0,
Jk=1
(4.3) _kz‘l(ﬁz“jak_aﬁ)(“j'f'ak) =0,
i
(4.4) ; kz—‘l (Baajou—aj) oo =0,
(46) Z: (ﬂldj“bj)aj = 0,
J#
4.7) 0 = by

f_z; (a;;—B2o3)
Then (2.2) has quadratic regression on (2.1) if, and only if F(x) is the normal distri-
bution function.
For the proof of theorem 4.1. we need the following lemma.

Lemma 4.1. If (2.2) has quadratic regression on (2.1), then the characteristic
Sfunction f(t) satisfies the differential equation

S B —ap) f ) [T fout) + 3 Boryme—az)« £t f (ay0) [T flout) +
=i b ey 17, ek

(4.8)
+ij§ (ﬂl“j_bj)f'(aj’)kéf(zk‘r) = ﬁokéf(akf)-

k=j

Moreover, in a neighbourhood of the origin, in which f(x;1)=0 (j=1,2,...,n),
the second characteristic @(t)=Inf(t) satisfies the differential equation

21' (Boj—a;)) 9" (o) + ] "Zl (Botjo—au) @ (a;1) @ (0 ) +
J=- 1, K=

(4.9)
+i g; (Bra;— b)) @ (a;1) = By.

PROOF of lemma 4.1. If (2.2) has quadratic regression on (2.1) then

(4.10) E(Qe") = By E(e"4)+ B, E(Ae"*) + f, E(Ae"4)
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holds for all real 7€ R,. If we replace (2.12), (3.10), (3.11) and the equation

@.11) E(Aﬁe“)=—jg"laif"(ajr)tf{f(zu)—“z;a,-a,f'(a,nf'(akr) éf(aﬂ)

. ,
ks J#k I j, 1%k

into (4.10) we obtain the differential equation (4.8). Moreover, in a neighbourhood
of the origin, in which f(x;7)=0 (j=1,2,...,n) if we divide both sides of (4.8)

by JJf(z;1) and introduce @(r)=In £(r) then (4.8) yields (4.9).
j=1

PROOF of theorem 4.1. Similarly to the proof of theorem 2.1. we establish that

(4.12) 0" (0) = —¢*
and
(4.13) Pe0) =0, s=3,4,....

Since @(x;7) (j=1,2, ..., n) is an analytic function in the interval |«;7|<d, there-
fore in this interval

242

(4.14) o) = ; : +1im 2.

As f(r) is supposed to be an entire characteristic function, the equation

_0-2"2

(4.15) f(r)::exp{ 3 +iml}

holds for all réR,, i.e. F(x) is the normal distribution.
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