Notes on matrix-valued stationary stochastic processes Il

By GY. TERDIK (Debrecen)

1. Introduction

We are going to construct the prediction of the matrix-valued stationary pro-
cesses (m. st. p.) with lag 1 and more. For this reason the connection of the matrix-
valued moving-average processes with the spectral density functions and the Q. H.
space spanned by the m. st. p. will be examined. The definitions and the designa-
tions of the first part will be used, thus, the m.st. p. {£,}=.., a curve in the Q. H.

space .#F*?, can denote a vector, a quadratic matrix, a rectangle matrix and a
ribbon matrix-valued discrete processes.

2. Moving-average process and spectral density

As in the vector case there is a close connection between the representation
of the m. st. p. by moving average and the integrability of the logarithm of the
determinant (det) of the spectral density function. In the case where the spectral
distribution function F(-) is absolutely continuous we will either call the matrix

function
f(2) = F'(A) = [Fa(D 1 =15

the spectral density function of the m. st. p. {{,}=. or say that the spectral density
function exists.

The sets M, ;(0=0) contain all M, valued functions F(e'®)=[Fy;(e"®)]f -1
on the unit circle (@€[0, 2x]) with complex-valued entires Fy,(+) for which

2x
[ |Fu(e®)Pdo <=
0

is fulfilled.
If F(+)EM, ; then F,(-) denotes the function

Fu(2)= 3 A4,2"

n=0

on the set |z|<1 of the complex plane, where

— 1 - iy ,in®
A,,-Eﬁf F(e®)e"® dO (eM,)
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the n-th Fourier coefficient of F(-). As the proofs of the following two theorems
come readily from the corresponding ones for the vector-valued stationary pro-
cesses, i.e., theorems of WIENER—MASANI ([5] 3.13. and 7.13. Theorem) and from
the methods of Q. H. space, we shall omit them.

2.1. Theorem. If {,}.. is moving-average process, i.e.,

(2.1) Gn = té; Ailla-rs AEM,.

Where n & MP*9, (ne,n)=0,G and 2 sp(A,GA{)<<= (sp refers to the trace of
K=0
matrices) then

a) {&,)=. isam.st. p.;
b) the spectral density function f(+) exists and

1(e) = B(®) 0* ()
where

B()EM, s, P(€)= 3 A,G2e ™ O¢€[0, 2n);
k=0
¢) either det &,(z)=0 or
& 1 2n ’
log det (4,GAp) = Eof log det f(¢'®) dO.
2.2. Theorem. If {&,}=.. is a m.st. p. and the spectral density function f(+)
exists and f(+)eM, , and
2n
2.2) [ logdet f(¢®) d@ > — o=
0
then
a) {&,)=. is a moving average process, i.e.,
on = 1;’0 ANy —x» Aké‘up
where
M EAME™, (s ) = 5&!*’,‘;‘; sp (A Ay) <=

(/€ M, is the unit matrix).
b
2r

(2.3) det (4, 4]) = cxp% [ logdet f(e'®) d6.
0

3. Q. H. space of a m. st. p.

The Q. H. subspace of .#f*? spanned by the set of the m.st. p. {&)" .. will
be denoted by (. |".) or G, simple. It is clear that

x
M2 0, 2 0,
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and they are subspaces. If t€.#f*% but 140, then the orthogonal projection of
T on o, is the [t]|s,]. For every {€g, the 1—[t|5,] L, i.e.,

(t—[t|6,),{)=0 (€M,, zero matrix).

We shall say that the m. st. p. {{,}=.. is non-deterministic if for any n, ¢,4 a,_,.
From the stationarity property (1.0) it follows that the last relation holds for a
single n only if it holds for all .
Let us define the innovation-process {n,}~. of a non-deterministic m. st. p.

{{a}= by

M = S—[Sxl or-1l-
We can calculate

<"m rl'm} = 5n.mG
where

G = (MosMo) = (Cns M)
The Q. H. space spanned by {n)" .. will be denoted by o(y,|"..) or a,.
3.1. Theorem. If m-=n then the following statements hold

a) 6,=0c,+a(n/%.,) and @, L o(p/n. 1)

b) o,=0..+0¢" and o_..1 0. where o_.=[) 0,

)

(3.1) "= 3 ().
k=0

This theorem is provable by methods of WIENER—Masan1 [5] (6.10. Lemma)
making use of the concept of Q. H. space.

In the next theorem three equivalent statements are summed up. One of them
is an analytic hypothesis for the spectral density functions. The two others are
the conditions of representation by moving averages and the “‘remote past” of
the process.

3.2. Theorem. If {{,}=. is a m.st.p. then the following statements are
equivalent:

a) the process is non-deterministic, G_.={0} and det G0,

b) {&,)° . is a matrix valued moving average process and det G #0,

c) the spectral density function f(+) exists for the m.st.p. {&,)=., f(+)EM, 4

and
2n

[ logdet f(e%®) d@ = —<.

Proor. It is sufficient to verify only that

S ; log det f(e'®) dO > — o
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if det G#0. This follows from the 2.1. Theorem since
Ay G = (o5 M0) = (MosNo) = G = (Mo, &o) = GAg
so0 Ag=I and @ (0)=G"2.

4. Prediction of a m. st. p.

Let {£,}=.. be a non-deterministic m. st. p., {1}=.. its innovation process,
det (ny, no)=det 00 and o_.={0}.
Thus

(4.1) on = kz; Aitly—x (Ao =1).

We want to construct the prediction & of &, (k=0) when the {&,} . is known.
The best linear predictor is

(4.2) Ek = [&x] ] = [&k|07] = Ig; Ay,
The error matrix, by definition, is

k=i
(4.3) (&=&, &8 = ,.;2: A GAJ.

The error matrix of prediction with lagl is G and
l in
A i@
4.4) det G = exp - .,f log det f(e'®) dO,

where f(-) is the spectral density function of the process.

In discrete case we were able to announce some results which are comparable
to vector valued stationary processes, for the m. st. p. which is a curve in. In my
opinion there is no difficulty in the continuous case either. The importance of the
research of the m. st. p. is greater from the standpoint of statistics as the definition
of stationarity is weaker.
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