On cosine operator functions
By B. NAGY (Budapest)

Introduction. Let X be a Banach space over the complex field, B(X) the space
of bounded linear operators from X into X, R the real field. A cosine operator func-
tion is a mapping C:R-B(X) such that C(0)=I (the identical operator), for
s, 1€R
(1 C(s+1)+C(s—1t) = 2C(s) C(1),

and t—t, implies C(t)—~C(#,) in the strong operator topology of B(X). For the
basic facts on cosine operator functions see e.g. [1], [3] and [4].

Let A be a closed linear operator with domain D(A4) dense in X, range R(A)
n X and non-void resolvent set g(4). Consider the differential equation

(2 u”(t) = Au(r),

where u:R—-D(A). H. FatTtorInI [1] has shown that the (generalized) solutions
of (2) are closely connected with the cosine operator functions and their in-
t

definite integrals, defined by T(7)x= f C(s)xds (x£X), supposing the Cauchy

0
problem for (2) is uniformly well posed (u.w.p.) in R.
The first part of this paper investigates the behaviour of cosine operator func-
tions and their indefinite integrals at infinity. As a rule the limits ‘l'l_m C(t) and

lim 7(z) do not exist even in the uniformly bounded case in any of the standard

[ == oo

operator topologies of B(X), therefore, following [2] (Chap. 18), we employ the
Cesaro (C,) and the Abel limits. Some of the results can be applied to study the
behaviour of the solutions of (2) under suitable conditions.

In the second part we prove a result characterizing the kernel of an operator
C(b) in the range of a cosine operator function.

Definition 1. Suppose F:(0,==)—~B(X) is a strongly measurable operator func-
tion such that for z=0, xcX, e *F(¢)x is Bochner integrable on (0, ==) rclative

to Lebesgue measure, and with the notation A(z)x=z f e *F(t)xdt we have
0

A(z2)€eB(X). We say that F(t) is weakly (strongly, uniformly) Abel-convergent

at infinity and its Abel limit is PEB(X), if lim A(z)=P in the respective operator

topologies of B(X). o
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It is well-known that for every cosine operator function C(z) there are
numbers w=0, M(w)=1 such that on R | C(?)|=M(w)e*""l. However, in general
there is no minimal growth parameter w (cf. [4], Remark on p. 10.).

Definition 2. If C(t) is a cosine operator function, we put w,=inf {w=0;
eIt/ C(1)| is bounded on R}, and call C(#) of type w.

Theorem 1. Suppose the cosine operator function C(t) is of type 0, and for
T
XX put T(t)x= f C(s)xds (t€R). Then the following statements are equivalent:

0
1) T(t) is weakly Abel-convergent at infinity,
2) C(t) and T(t) are uniformly Abel-convergent at infinity with limits 0,
3) there are numbers v, K=0 such that on the interval (0, v) we have |zR(z*; A| =K
(R(u; A) will denote the resolvent of the generator operator A of C(1)),
4) there is a v=0 such that for every xcX the set H(x)={zR(z%; A)x; O=z<v}
is conditionally sequentially weakly compact.

PROOF. 2) clearly implies 1). If 1) holds and x£X, x"€X7, then
3) XPER(2% A% = X" f e *T()xdt - x*Px if z-—-0+.
0

Now if v=0 and {z,}<(0,¢) is a sequence, then for some subsequence {z, } of
{z,} we have z, —z,€[0,v]. If z,>0 then, by the analyticity of the resolvent for
Re z=0, we obtain z, R(z: ; A)x—~zyR(z3; A)x, while if z,=0, then by (3) we get
that H(x) is conditionally sequentially weakly compact, i.e. 4) follows.

If 4) holds, then according to [2] (Theor. 2. 9. 1.) H(x) is bounded, and the
principle of uniform boundedness yields 3).

Finally, if 3) is satisfied, then on the interval (0, v) we have [z2R(z2?; A)|| =
=K.z, thus z—+0+ implies zR(z; A)—0 in the uniform operator topology of B(X).
By [2] (Theor. 18. 8. 1.), R(z: A) is then holomorphic in a neighbourhood of 0,
hence in some neighbourhood of 0 ||R(z%; 4)| is bounded, thus [|zR(z*; 4)|=Nz|.
Consequently l-in;l' zR(z?; A)=0 in the uniform operator topology and, since

z [ e=#C(t)xdt=2*R(z?; A)x (20, x£X), therefore 2) is true and the proof
o

is complete.

Corollary. Suppose the Cauchy problem for (2) is u.w.p. in R and of tvpe =w
for every w=0. Then every solution of (2) is Abel-convergent at infinity if and only
if 3) or 4) of Theorem 1 is valid. Moreover, then every generalized solution of (2)
is Abel-convergent at infinity to 0.

Remark. The Abel convergence of a function f:(0,==)—~X has been defined
in [2] (Sec. 18. 2.).

Proor. Under the given conditions the operator 4 generates a cosine operator
function C(z) of type 0 ([1] (5. 9. Theorem). If every solution is Abel-convergent,
then for x£ D(A)

ZR(z22: A)x == f e *T(Dxdt - Px (z—-04).
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Moreover, then zR(z2; A)Ax=:z(z2R(z*; A)x—x)-0, and if y€X, uco(A), then
xo=R(u; A)y<D(A), hence zR(z*; A)y=zR(z?; A)(ul— A)x, converges if z—0+.
By the uniform boundedness principle, 3) and then 4) of Theorem 1 is valid. The
remaining parts of the Corollary are evident, by Theorem 1.

In what follows R(B) and Z(B) denote the range and the zero subspace, re-
spectively of a linear operator B, and H denotes the strong closure of the set H.

Theorem 2. If C(1) is a cosine operator function of type 0, then the following
conditions are equivalent:
1) C(t) is weakly Abel-convergent at infinity,
2) C(z) is strongly Abel-convergent at infinity,
3) for some v=0 and for every x¢X the set {zR(z; A)x; 0<z<v} is conditionally
sequentially weakly compact,
4) for some v, K=0, 0<z<uv implies |zR(z; A)| =K, and X=Z(A)+ R(A).
Moreover, then the strong Abel limit is a projection operator P< B(X), for which

(i) PC(t) = C()P = P for (R,

(ii) APx=0 for x€X, PAx=0 for x€D(A),
(i) R(P)=Z(A) = {x€X; C(s)x = x for sc R},
(iv) Z(P) = R(A),

(v) X = R(A)2Z(A).

Proor. If C(r) is of type 0, then for every z=0, x¢X we have

A(z)x = = f e~ C(f)x dt = 22R(z%; A)x,
0

and
4) lim A(z) = Ilm zZR(z; A)

204

in the respective topologies. Moreover, then A generates a semigroup of operators
F(r), t<(0,==) of class (C,) and of type =0 (cf. [1], 5. 11. Remark on p. 92). The
Abel-convergence of F(r) is equivalent to the existence of the limit (4). Thus the
assertions of the theorem follow from [2], Secs. 18.5.—18.7., while (i) can be
proved similarly.

Definition 3. Suppose the operator function F(r) satisfies the conditions
occurring in Definition 1, and that for 7, a=0, x¢X with the notation

i 4
C(t, a)x = at~° f (1—s)*~LF(s)x ds

we have C(r, a)c B(X). We say that F(r) is weakly (strongly, uniformly) C,-conver-
gent at infinity and its C, limit is Q< B(X), if Ilm C(t,a)=Q in the respective
operator topologies of B(X)
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Theorem 3. If C(t) is a cosine operator function, for which on R |C(1)| =M,
then the following assertions are equivalent:
1) C(t) is weakly C,-convergent at infinity for some a=0,
2) C(t) is strongly C,-convergent at infinity for each a=0,
3) X=2Z(A)+ R(A).

Moreover, then the C, limit is a projection operator P<B(X) satisfving the
assertions of the previous theorem.

J"
Proor. Under the given conditions for z=0 we have |[zR(z*: A)| = Tf , thus
-
&) IzR(z; 4)| = M.

If 1) holds, then by [2] (Theorem 18. 2. 1.) C(#) is weakly Abel-convergent and,
according to Theorem 2, 3) is true. If 3) is valid, then (5) gives that C(7) is strongly
Abel-convergent and, by [2] (Theorem 18.3.3.) 2) holds, while 2) evidently implies 1).

Theorem 4. Suppose that, with the notations of Theorem 1, sup {|C(1)|,||T(¢)!:
tER}=M is finite. Then for each a=0 C(t) and T(t) are strongly C,-convergent
at infinity to 0.

PrOOF. Since R(z%; A)x=f e~ *T(t)x (z=0, x€X), thus [zR(z*: A)| =M for
0

z=0. By Theorem 1, C(¢) and T'(z) are strongly Abel-convergent at infinity to 0,
and [2] (Theorem 18.3.3.) gives the assertion.

Theorem 5. If the cosine operator function C(t) is continuous with respect to
the uniform operator topology of B(X), and |C(t)||=M on R, then the following
statements are equivalent:

1) C(t) is uniformly Abel-convergent at infinity to PcB(X),
2) C(t) is uniformly C,-convergent at infinity to P for each a=0,
3) z=0 is a simple pole of R(z; A) with residue P.

ProOF. By our previous remarks, it follows from [2], Theorems 18.2.1.. 18.3.3.
and 18.8.4.

2.
It is known from the spectral theory of cosine operator functions [3] that 0
is an eigenvalue of the operator C(b) (£0) if and only if at least one element of
{— [% [k+%}]~; k intcger} is an eigenvalue of 4. The following theorem

characterizes the kernel of C(b).

Theorem 6. xcX is in the kernel of the operator C(b) (b=0) in the range of
a cosine operator function if and only if the function

f(2) = (1+e2*3)zR (2% A)x  {z€ Ve (A)}

can be analytically continued to an entire function h(z) for which on the complex
plane Z we have |h(z)| = Me*\o-Rezl,
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Proor. We may and will assume x=0, further that 5=0, for C(¢) is an even
function. To prove the only if part, put X,={x€X; C(b)x=0}. Then X, is a non-
trivial closed subspace, for which C(s) X, X, for s€ R. Hence if A is the generator
of C(1), then X=X, D(A) is dense in X,,, and the restriction of 4 to X, is closed
with 4AX,CX,. Suppose z€0(4) and x€X, then C(b)R(z?; A)x=R(z*; A)C(b)x,
hence R(z?; A) X, X4, and the restriction of R(z*; 4) to X, is the unique bounded
linear operator in X, for which

R(2%; A)(I-A)x=x (x€X,),
(22 I-A)R(2%; A)x = x (x£X)).

Put :k—{’i-rl) (k integer), H={z;; k integer}U {0}, z€Z\ H, x€X, and
Fa)x = 27l =&~ f e~ C(u)x du.

Then U(z) is a bounded linear operator in X,, and U(z)Ax=AU(z)x for x€X,.
x<X, implies
C(s+b)x+C(s—b)x = 2C(s) C(b)x = 0,

thus on X, C(s+2b)=—C(s) for every s€R. Integrating twice by parts, we get
for x€X,
‘.)b

U(2)Ax = z7Y(1 + e~ %)~ lf e *C"(u)xdu = —x+22U(2)x.

Now if x€X,, {x,} X, x,~x, then U(z)x,~U(z)x and AU(2)x,— —x+2z*U(2)x,
thus the closedness of A4 :mplles AU(Z)x=—x+4+22U(2)x.

Hence for z€)o(4)N(Z\H) and x€X, we get R(z%; A)x=U(z)x. If x£X,
is fixed, then the function (1+e~%*)zU(z)x is an analytical continuation on Z>\ H

of f(z)=(1 + e~ %) zR(z2; A)x, consequently h(z)= f e~ *C(u)x du is the analytical
continuation on Z of f(z). Moreover,
2b
[h(2] = e*Rez! [ |C(u)xl du = MetiRe,
0

which was to be proved.
On the other hand, suppose that x€X and f(z)=(1+e *%)zR(z* A)x

{'”c FQ(A)} can be continued to the function lz( z) with the stated properties. Since
for some w=0 Rez=w implies zR(z*; A)x= f e~ C(u)x du, therefore with the

notation C,(u)x= ffC(r)\'dr dv we get for r:=-u u=0 (see [2], (6.3.9))

r+foo
Cx=Qr) [ eh(z)(1+e %) 2%z,

r—iee
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for the last integral converges absolutely, by the properties of /(z). Calculating

residues, it can be shown that with the notation h':—‘_’[h(:) (1+e=22)~1, o we
get for u=2b e

hO) =
’§ )+ 3 ek h(z)(2bzD)

k=—oo

Co(u)x = h*+u

Hence C,(u+2b)x+ Co(u)x=21"+(u+b)h(0) and, differentiating twice, we obtain
Cu+2b)x+C(u)x=0. By (1), it follows C(u+b)C(b)x=0 (u=2b) and, again
by (1), with v=3b we get

C(b)x =2C(v)*C(b)x—C(2v)C(b)x = 0,

and the proof is complete.
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