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A characterization of the local structure of
static stars

By E. GARC�IA-R�IO (Santiago de Compostela) and D. N. KUPELI (Ankara)

Abstract. It is shown that the existence of a “spherical coweakly-affine static
reference frame” in a spacetime gives rise to a 2 by 2 warped product metric tensor
describing a static star locally.

1. Introduction

Intuitively, a “static star” refers to a gravitational field generated by a
time independent nonrotating source. Throughout this paper, we only will
consider the gravitational field exterior to the celestial body of a “static
star” with no matter present, yet still call that gravitation a “static star”.
In the literature, formal descriptions of “static stars” are made by using
asymptotic considerations (see [4, Ch. 9]). Yet the physical observations
are made locally and hence, these observations are suited to build a “static
star” model.

A local characterization of Schwarzschild and Reissner metrics is stud-
ied in [3] by using the (local) concepts of infinitesimal isotropy (or equiva-
lently, null anisotropy) and weak-affinity. From the physical point of view,
infinitesimal isotropy refers to “spherical symmetry” and weak-affinity, to-
gether with infinitesimal isotropy, refers to nonrotation. Indeed this is the
case in Schwarzschild and Reissner metrics.

In the current theory of “static stars”, staticity is expressed by the
existence of a static reference frame on some open subset of the space-
time. In this paper, we will make it our starting point in order to reach
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back to infinitesimal isotropy. We will formulate a “static star” by only
imposing conditions on the static reference frame, an important one is the
coweak-affinity of the static reference frame. Then with some “spherical-
ity” assumptions, we will obtain a 2 by 2 warped product decomposition
of the metric locally. Yet to reach infinitesimal isotropy, we will make
in addition the assumption of symmetry with respect to the stress-energy
tensor. Then the spacetime will become the one described in [3], which
has a 2 by 2 warped product decomposition locally.

2. Preliminaries

Let M be a 4-dimensional spacetime. A future directed unit timelike
vector field Z1 is called a reference frame. Let ω1(·) = 〈 · , Z1〉 be the 1-form
associated to Z1. We call Z1 an irrotational (or locally synchronizable)
reference frame if ω1 ∧ dω1 = 0. Also it can be shown that if Z1 is irrota-
tional, then locally there exist functions t and h > 0 such that ω1 = −hdt,
i.e., Z1 = −g∇t locally (see [11, pag. 52–59]). A reference frame Z1 is
called stationary if there exists a function f > 0 such that Z = fZ1 is a
Killing vector field. A stationary reference frame Z1 is called static if Z1

is irrotational (see [11 pag. 219]). A spacetime M is called static (resp.,
stationary) if there exists a static (resp., stationary) reference frame on
M . In fact, if M is a static spacetime with static reference frame Z1, then
M is locally a warped product Ig2 ×N , where I ⊂ R, N is a Riemannian
manifold, and g > 0 is a smooth function. Then Z1 = −g∇t and the
Killing field Z = fZ1 = −g2∇t = ∂

∂t (cf. [8 pag. 360–361]). It follows that
the orthogonal vector bundle Z⊥1 to Z1 is integrable with totally geodesic
leaves and f = g.

3. Static spacetimes

Lemma 3.1. If Z is a timelike Killing vector field on M , then ∇ZZ =
f∇f ⊥ Z, where 〈Z, Z〉 = −f2.

Proof. First note that, by the Killing identity, 〈∇ZZ, Z〉 = 0 and
hence ∇ZZ ⊥ Z. Also, for every X ∈ ΓTM ,

0 = 〈∇ZZ, X〉+ 〈Z,∇XZ〉 = 〈∇ZZ,X〉+
1
2
X〈Z, Z〉

= 〈∇ZZ, X〉 − 1
2
X(f2) = 〈∇ZZ − f∇f, X〉.

Hence ∇ZZ = f∇f . ¤
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Definition 3.2. A stationary reference frame Z1 on M is called proper
if ∇f 6= 0 at each p ∈ M , where Z = fZ1 (f > 0) is a Killing vector field.

Remark 3.3. Note that the properness of Z1 is also used for the global
characterization of the static parts of the Schwarzschild and Reissner met-
rics (see [5] and [6]).

Definition 3.4. Let Z1 be a proper stationary reference frame on M .
The unit acceleration P1 of Z is defined by P1 = ∇f

‖∇f‖ . Also the canonical
distributions W1 and W2 in TM are defined by W1 = span{Z1, P1} and
W2 = W⊥

1 . Furthermore, if Z1 is static then P1 is called the fundamental
gyroscope of Z1.

Remark 3.5. Indeed, if Z1 is static, then it can be easily shown that
FZ1P1 = 0 by using the fact that Z⊥1 has totally geodesic leaves, where
FZ1 is the Fermi–Walker connection over Z1 (see [11, pag. 50–52]). Thus
P1, as being the unit acceleration of Z1, can be named as the fundamental
gyroscope of Z1.

Lemma 3.6. Let Z1 be a proper stationary reference frame on M .
Then

(1) [Z,∇f ] = 0 and hence W1 is integrable.

(2) [Z, P1] = 0 and hence Z‖∇f‖ = 0.

Proof. (1) Let X ⊥ Z be a vector field. Then

〈∇X∇f, Z〉 = −〈∇f,∇XZ〉 = 〈∇∇fZ, X〉
= 〈∇Z∇f, X〉+ 〈[∇f, Z], X〉 = 〈∇X∇f, Z〉+ 〈[∇f, Z], X〉

and hence [∇f, Z] ⊥ X. Also,

〈∇Z∇f, Z〉 = −〈∇f,∇ZZ〉 = 〈∇∇fZ, Z〉
and hence [Z,∇f ] ⊥ Z. Thus [Z,∇f ] = 0, and it also follows that W1 is
integrable.

(2) By (1), [Z, P1] ∈ ΓW1 and, since

〈∇ZP1, Z〉 = −〈P1,∇ZZ〉 = 〈∇P1Z, Z〉
and

〈[Z, P1], P1〉 = 〈∇ZP1, P1〉 − 〈∇P1Z, P1〉 = 0,

it follows that [Z, P1] = 0 and hence Z‖∇f‖ = 0. ¤
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Lemma 3.7. If Z1 is a proper static reference frame on M , then W2

is also integrable.

Proof. Recall from the preliminaries that locally Z = fZ1 = −g2∇t.
Hence ∇t and ∇f are orthogonal to W2. Then for any X,Y ∈ ΓW2,

〈∇t, [X, Y ]〉 = 〈∇t,∇XY 〉 − 〈∇t,∇Y X〉
=− 〈∇X∇t, Y 〉+ 〈∇Y∇t,X〉 = 0

and similarly, 〈∇f, [X, Y ]〉 = 0. Thus it follows that [X,Y ] ∈ ΓW2. ¤
Definition 3.8. Let X be a vector field on M . The affinity tensor field

of X is defined by

(LX∇)(U, V ) = LX∇UV −∇ULXV −∇LXUV,

where L is the Lie derivative. X is called affine if LX∇ = 0 (see [10,
pag. 103]).

Remark 3.9. Note that every Killing vector field is affine.

Definition 3.10. A proper static reference frame Z1 on M is called
coweakly-affine if P1 is a geodesic vector field (i.e., ∇P1P1 = 0) and

〈(LP1∇)(U, V ), V 〉 = 0 for every U, V ⊥ P1.

Proposition 3.11. Let Z1 be a proper static reference frame on M . If
P1 is a geodesic vector field and 〈(LP1∇)(X, Y ), Y 〉 = 0 for every X, Y ∈
ΓW2 then Z1 is a coweakly-affine static reference frame.

Proof. First note that, since LP1Z = 0 and ∇ZZ = f‖∇f‖P1,

〈(LP1∇)(Z, Z), Z〉 = 〈LP1∇ZZ, Z〉 − 〈∇ZLP1Z,Z〉
− 〈∇LP1ZZ, Z〉 = 0.

Also note that since LP1∇ is tensorial, it suffices to check

〈(LP1∇)(U, V ), V 〉 = 0 only for U = Z + X and V = Z + Y,

where X,Y ∈ ΓW2 are Lie parallel vector fields along P1. (Note that since
P1 is a geodesic vector field and W2 is integrable, such X,Y ∈ W2 can
always be constructed locally). Then

〈(LP1∇)(Z + X, Z + Y ), Z + Y 〉
= 〈(LP1∇)(Z,Z), Z〉+ 〈(LP1∇)(Z, Y ), Z〉

+ 〈(LP1∇)(X,Z), Z〉+ 〈(LP1∇)(X, Y ), Z〉
+ 〈(LP1∇)(Z, Z), Y 〉+ 〈(LP1∇)(Z, Y ), Y 〉
+ 〈(LP1∇)(X,Z), Y 〉+ 〈(LP1∇)(X,Y ), Y 〉.
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By the assumption, the first and the last terms vanish. Others can easily
be shown to vanish. For example, since LP1Z = LP1X = LP1Y = 0,

〈(LP1∇)(X, Z), Y 〉 = 〈LP1∇XZ −∇XLP1Z −∇LP1XZ, Y 〉
= 〈LP1∇XZ, Y 〉 = 0;

since ∇XZ=0 by the fact that 〈∇XZ, Z〉= − 〈∇ZZ,X〉=0, 〈∇XZ, P1〉=
−〈Z,∇XP1〉 = 0 (since Z⊥ is totally geodesic) and 〈∇XZ, Y 〉 =
−〈Z,∇XY 〉 = 〈∇Y Z,X〉 = −〈∇XZ, Y 〉 = 0 for every Y ∈ ΓW2.

Also,

〈(LP1∇)(Z, Y ), Y 〉 = 〈LP1∇ZY −∇ZLP1Y −∇LP1ZY, Y 〉
= 〈LP1∇ZY, Y 〉 = 〈LP1∇Y Z, Y 〉+ 〈LP1LZY, Y 〉
= 〈LP1LZY, Y 〉 = 0

since LP1LZY = [P1, [Z, Y ]] = −[Z, [Y, P1]] − [Y, [P1, Z]] = 0 by the Jacobi
identity. ¤

Lemma 3.12. Let Z1 be a coweakly-affine static reference frame.
Then

〈∇U∇V P1, V 〉 = 〈∇∇U V P1, V 〉
for every U, V ⊥ P1.

Proof. Let R be the curvature tensor. Then

R(U,P1)V = ∇U∇P1V −∇P1∇UV −∇[U,P1]V

= ∇U∇V P1 +∇ULP1V −∇∇U V P1 − LP1∇UV +∇LP1UV

= ∇U∇V P1 −∇∇U V P1 − (LP1∇)(U, V ).

Hence

0 = 〈R(U,P1)V, V 〉 = 〈∇U∇V P1, V 〉 − 〈∇∇U V P1, V 〉
− 〈(LP1∇)(U, V ), V 〉.

Thus 〈∇U∇V P1, V 〉 = 〈∇∇U V P1, V 〉. ¤
Definition 3.13. Let Z1 be a coweakly-affine static reference frame

on M . Then the shape operator LP1 : W2 7→ W2 of W2 is defined by
LP1X = −∇XP1. Also the extrinsic curvature function κi : M 7→ R of
Wi, (i = 1, 2), is defined by

κi(p) =
〈R(xi, yi)yi, xi〉

〈xi, xi〉〈yi, yi〉 − 〈xi, yi〉2 ,

where xi, yi ∈ Wip with 〈xi, xi〉〈yi, yi〉 −〈xi, yi〉2 6= 0.
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Remark 3.14. Note that LP1 is well-defined since 〈∇XP1, Z〉 =
−〈P1,∇XZ〉 = 0 and 〈∇XP1, P1〉 = 1

2X〈P1, P1〉 = 0 for every X ∈ W2.
Also κi is well-defined since it corresponds to the curvatures of the planes
in Wi, i = 1, 2.

Definition 3.15. Let Z1 be a coweakly-affine static reference frame
on M . Z1 is called spherical if det LP1 ≥ 0 and κi > 0, i = 1, 2.

Remark 3.16. Let Z1 be a spherical coweakly affine static reference
frame. The sphericality of Z1 can physically be interpreted as the shape of
a star must be “extrinsically and intrinsically” spherical and radially atrac-
tive rather than repulsive. The “nonrotationality” of the star is essentially
described by that Z1 is a coweakly-affine static reference frame. Here, note
that every Killing field is an affine vector field. Thus, since P1 = ∇f

‖∇f‖ and
is weakly-affine, P1 can also be considered as a “weakly-static” vector field.
Hence by assuming that Z1 is coweakly-affine static, actually we are im-
posing some staticity on the distribution W1 = span{Z1, P1}. But the
“staticity” of W1 should be considered as an “affine staticity”, that is,
which does not involve the curvature tensor.

Now we can give a local characterization of a “spherical static star”.

Theorem 3.17. Let Z1 be a spherical coweakly-affine static reference
frame on M . Then M is locally a warped product (M1 ×ψ2 M2, 〈 , 〉1 ⊕
ψ2〈 , 〉2), where (M1, 〈 , 〉1) and (M2, 〈 , 〉2) are respectively, Lorentzian and
Riemannian surfaces with positive curvature. Furthermore if ∇κ2 ⊥ W2,
then (M2, 〈 , 〉2) is of constant positive curvature.

Proof. Note that by Lemmas 3.6 and 3.7, W1 and W2 are integrable.
First we will show that the integral manifolds of W1 are totally geodesic.
Indeed, it suffices to show that ∇ZZ ∈ ΓW2, ∇P1P1 ∈ ΓW2 and ∇P1Z ∈
ΓW2. The first two statements follow immediately since ∇ZZ = f‖∇f‖P1

and ∇P1P1 = 0. For the last one, let X ∈ ΓW2, then since

〈∇P1Z, X〉 = −〈∇XZ, P1〉 = 〈Z,∇XP1〉 = 0

by the Remark 3.14, it follows that ∇P1Z ∈ ΓW1. Next we will show that
the integral manifolds of W2 are totally umbilic. Let X,Y ∈ ΓW2 and I
be the 2nd fundamental form tensor of the integral manifolds of W2.

Note that since 〈∇XY,Z〉 = −〈∇XZ, Y 〉 = 0 by the Remark 3.14,

I(X, Y ) = 〈∇XY, P1〉P1 = −〈Y,∇XP1〉P1.
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Hence, if T and ⊥ denote the components tangent and orthogonal to
W2 respectively, and ∇⊥ is the normal connection,

(∇XI)(Y, Y ) = ∇⊥XI(Y, Y )− 2I((∇XY )T , Y )

= −X〈Y,∇Y P1〉+〈Y,∇Y P1〉(∇XP )⊥+2〈Y,∇(∇XY )T P1〉P1

= 〈∇XY,∇XP1〉P1 − 〈Y,∇X∇Y P1〉P1

= 〈Y,∇∇XY P1〉P1 − 〈Y,∇X∇Y P1〉P1

= 〈Y,∇∇XY P1 −∇X∇Y P1〉P1

= 0 by Lemma 3.12.

Thus, since (∇XI) is symmetric, it follows that (∇XI) = 0.
This has two implications: First, from the Codazzi equation (cf. [8,

pag. 115]), R(X, Y )V ∈ ΓW2 for every X, Y, V ∈ ΓW2. Second, if ci,
i = 1, 2 are the eigenvalues of LP1 then ∇ci ⊥ W2, that is, ci is constant
along the integral manifolds of W2. Now we will show that c1 = c2. Indeed,
let X1, X2 be orthonormal eigenvectors of LP1 corresponding to c1 and c2

respectively. Then, since

〈∇∇XY P1, Y 〉 = 〈∇Y P1,∇XY 〉

and

〈∇X∇Y P1, Y 〉 = X〈∇Y P1, Y 〉 − 〈∇Y P1,∇XY 〉,
Lemma 3.12 can also be written as

X〈∇Y P1, Y 〉 = 2〈∇Y P1,∇XY 〉
for X, Y ∈ ΓW2. Hence, by setting Y = X1 − X2, since X〈∇Y P1, Y 〉 =
X(c1 + c2) = 0, we obtain

0 = 2〈∇Y P1,∇Y Y 〉 = 2(c2 − c1)〈X1,∇XX2〉
for every X ∈ ΓW2. But if c2 6= c1, then (∇XXi)T = 0 (i = 1, 2) for every
X ∈ ΓW2 and hence the curvature tensor R2 of the induced Riemannian
structure of the integral manifolds of W2 is identically zero. But then from
the Gauss equations

0 = 〈R2(X1, X2)X2, X1〉 = 〈R(X1, X2)X2, X1〉
+ 〈LP1X1, X1〉〈LP1X2, X2〉 = κ2 + c1c2 = κ2 + detLP1

in contradiction with the assumption that Z1 is spherical. Thus c1 = c2 = c
and it follows that I(X, Y ) = 〈X, Y 〉P , where P = cP1. Hence the integral
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manifolds of W2 are totally umbilic with normal parallel normal curvature
vector field P . Then it follows from [9, Prop. 3(c)] that M is locally a
warped product M1 ×ψ2 M2 with M1 of curvature κ1 > 0 and M2 is of
constant curvature κ2 + c2 > 0. Furthermore, if κ2 is constant along the
integral submanifolds of W2 then M2 is of constant curvature. ¤

Remark 3.18. Note that the local warping function g2 in Ig2×N may
be quite different from the warping function ψ2 in M1×ψ2 M2. For example
in the Schwarzschild metric in usual coordinates, g2 = (1− 2m

r ) and ψ2 =
r2. Also we can introduce Schwarzschild type coordinates for M1. Note
that since [P1, Z] = 0, there exists a chart (t, r) such that Z = ∂/∂t and
P1 = ∂/∂r. Also since Zf = 0, where 〈Z,Z〉 = −f2, f is only a function
of r. Hence the metric is locally of the form −f2(r)dt ⊗ dt + dr ⊗ dr
on M1. Also note that since [hP1, Z] = 0 for any function h depending
only on r, one may introduce other Schwarzschild type coordinates for
M1. Furthermore, by [8, Prop. 35, pag. 206], since I(X,Y ) = 〈X,Y 〉P =
−〈X, Y 〉(∇ψ

ψ ), ∇ψ is proportional to P and hence 〈∇ψ, Z〉 = 0. Thus ψ is
only a function of r. That is, the 2 by 2 warped metric above is locally a
spherically symmetric static metric [7, pag. 594]

Remark 3.19. Static parts of the Schwarzschild and Reissner metrics
are examples to the above theorem which describes the metric of the static
part of a “static star”. Yet Schwarzschild and Reissner metrics are in fact,
special cases of the above theorem as being infinitesimally isotropic.

Definition 3.20. Let Z1 be a spherical coweakly-affine static reference
frame on a spacetime M obeying the Einstein equation for a stress-energy
tensor T with tr T = 0. Z1 is called symmetric with respect to T if
T (Z1, Z1) = −T (P1, P1).

Theorem 3.21. Let M be a spacetime obeying the Einstein equation
for a stress-energy tensor T with trT = 0. If Z1 is a spherical coweakly-
affine static reference frame on M and is symmetric with respect to T , then
M is locally a warped product given in Theorem 3.17, and furthermore:

(a) R(z, x)y = µ〈x, y〉z for every z ∈ W1, x, y ∈ W2 and viceversa,
where µ < 0 is a smooth function.

(b) R(x, y)z = κiR0(x, y)z for every x, y, z ∈ Wi, i = 1, 2,
where R0(x, y)z = 〈z, y〉x− 〈x, z〉y.

(c) T = η(−〈 , 〉1 ⊕ 〈 , 〉2), where η = 2µ + κ2 = −2µ− κ1 ≥ 0.

Proof. By Theorem 3.17, M is locally a warped product. Now by
using [8, Prop. 7.35, 7.42 and 7.43],
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(1) R(x, y)z = K1R0(x, y)z for every x, y, z ∈ W1, since W1 is totally
geodesic.

(2) R(x, y)z = (K2 + 〈P, P 〉)R0(x, y)z − 〈P, P 〉R0(x, y)z = K2R0(x, y)z
by the Gauss equations.

(3) Note that since P1 = −∇ψ
cψ and is a geodesic vector field,

〈∇P1∇ψ, Z1〉 = 0. Hence Z1 and P1 are the eigenvectors of the Hessian
tensor ∇∇ψ, corresponding to the eigenvalues, say a and b, respec-
tively. Then, since

Ric(U, V ) = κ1〈U, V 〉 − 2
ψ
〈∇U∇ψ, V 〉

for every U, V ∈ ΓW1 and T = Ric, it follows that

Ric(Z1, Z1) = −κ1 +
2
ψ

a = −Ric(P1, P1) = −κ1 +
2
ψ

b.

Thus a = b = −ψµ for some function µ and hence ∇U∇ψ = −ψµU for
every U ∈ ΓW1.

Then, for any U ∈ ΓW1 and X, Y ∈ ΓW2,

R(U,X)Y = −〈X, Y 〉
ψ

∇U∇ψ = µ〈X, Y 〉U

and for any X ∈ ΓW2 and U, V ∈ ΓW1

R(X,U)V = −〈∇U∇ψ, V 〉
ψ

X = µ〈U, V 〉X.

Also, since 0 ≤ T (Z1, Z1) = Ric(Z1, Z1) = −κ1 − 2µ and κ1 > 0, it
follows that µ < 0. Hence we showed (a) and (b), that is M is infinitesi-
mally isotropic with respect to TM = W1 ⊕W2. Then it follows from [2,
Prop. 4.4] that

T = Ric = (κ1 + 2µ)〈 , 〉1 ⊕ (κ2 + 2µ)〈 , 〉.
But trT = 0, κ1 + κ2 + 4µ = 0, and hence T = η(−〈 , 〉1 ⊕ 〈 , 〉2), where
η = κ2 + 2µ = −κ1 − 2µ ≥ 0. ¤

Remark 3.22. Note that the stress-energy tensor T in the above the-
orem corresponds to the electromagnetic stress-energy tensor in the Reiss-
ner solution, where η corresponds to negative Faraday stresses (cf. [1,
pag. 124]). Indeed, with no matter present but a radial electric field in the
“affinely static”, W1 ⊕ W2 possesses such a stress-energy tensor, (cf. [7,
pag. 840]). Also see [5], [6] for a global version of the above theorem by
making asymptotic considerations.
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Remark 3.23. A spacetime with a curvature tensor as in Theorem 3.21
is called infinitesimally isotropic (equivalently, null anisotropic) with re-
spect to the decomposition TM = W1 ⊕ W2 (see [2] and [3]). In fact,
Theorem 3.21 together with Theorem 3.17 gives the same conclusion as [3,
Th. 3.11]. But we note that [3, Th. 3.11] is also applicable to non-static
parts of a “spherically symmetric static star” to give a warped product
M1×ψ2 M2 locally. Indeed, although there exists no static reference frame
in the “black hole” regions of Scharzschild and Reissner spacetimes, the
metric is still a warped product M1 ×ψ2 M2. In other words, [3, Th. 3.11,
3.16] may be considered as a local characterization of “spherically sym-
metric static stars”.
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