Remarks on a functional calculus based on Fourier series

By N. C. LUONG and A. SZAZ (Debrecen)

(. Introduction and notation

In algebras with identity the functional calculus can be defined for rational
functions [2]. In Banach algebras with identity it can be extended to analytic func-
tions [4]. Moreover, in certain algebras one can go further. For instance, in com-
mutative B*-algebras with identity the functional calculus can be defined for
continuous functions.

In this note, we extend the functional calculus for some particular algebras
to arbitrary functions. The principial tool is the following representation theorem
which is included as a special case in [10].

Let o/ be a commutative algebra over C and a 7;-space such that the vector
space operations are continuous and the multiplication is separately continuous.
Suppose that (e,),cr is an orthogonal family of nonzero idempotents of ./ such
that {e,},c has no proper annihilators in &/ and «&/xe,cCe, for all 2£I'. Denote
M =M (=) the multiplier extension of o7 [7, 9]. Then, for each FcIN, there exists
a unique function F: I'-C such that

F = 3 F(a)e,
i
in M. Moreover, the mapping F--F is an algebraic and topological isomorphism
of M onto C'.

Examples for such particular algebras can be found in [10] and also in
[1, 3, 5, 6, 8). The above notations will be used throughout this note without further
references.

1. The definition and some basic properties

Definition 1.1. For ®: DcC-C, let
D = {FeW: F(I') c D}

B(F) = > ®(F(2))e,

and &: D—-IM such that

in M for all FebD.

Remark 1.2. By the representation theorem stated in the introduction, it is
clear that the above definition is correct. Moreover, since Z(x)=z for all zeC and
2£T, it is also clear that & is an extension of @. Therefore, if no confusion seems
possible, we may write @ in place of @.
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Theorem 1.3. Let D=C. Then the mapping defined on C° by

-

[
is an algebraic and topological isomorphism of CP into MP such that if ®,(z)=1
and ®,(z)=z for all-z€D, then $,(F)=1 and &,(F)=F for all F=D.

Proor. Everything stated here is clear, except perhaps the continuity statements.
For this, suppose that (®,) is a net in C? and ®cCP, If lim®,=®, then we have
.

lim &,(F)"(2) = lim @,(F()) = P(F(2)) = $(F)" (=)

for all FcD and «2<I'. Hence, it follows that lim &, (F)=&(F) for all FeD, i.e.,
lim @,= &. This shows that the mapping @ @ is continuous. To prove that the

inverse of this mapping is also continuous, observe that if lim &, ,=@. then we
have ’

lim @, (z) = lim @, (z) = $(z) = D(2)

v v

for all z¢D, ie., lim® =,

Corollary 1.4. Let z,¢C, O<r=+= and D={z€C: |z—z,|<r}. Suppose that
@: D-C is analytic. Then
. = PW(z
s(ry=3 20

n=0 n!

(‘F'_ :u)"
in M for all FD.

Proor. Define the functions S, on D by

n @) (z
S =32 ooy

Then a direct application of Theorem 1.3 shows that

" *) (-
8.0 =2 222 (r- o,

and lim S.(F)=®&(F) for all FzD.

Definition 1.5. Let .# be the set of all invertible elements of 9. For F<UN,
the set
a(F) = {4€C: F-145}

is called the spectrum of F.
Remark 1.6. Observe that we have

a(F) = F(I')
for all Fei.
The following theorem is an elementary version of the spectral mapping
theorems [2, 4].
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Theorem 1.7. Let ¢: DcC—~C. Then

St B o(P(F)) = ®(o(F))
or all FED.

Proor. Clearly, we have

o(B(F)) = $(F)" (I = ¢(£I)) = d(a(F))
for all F=D.

Theorem 1.8. Let &: DcC—-C and ¥V: ECC—C. Then
(Po¥)” = PP,

PrOOF. By Theorem 1.7, it is clear that (®o¥)~, and $o¥ have the same
domain. On the other hand, if F belongs to the domain of (®o¥)”, then we have

(®=2%) (F) () = (@ V) (F(2)) = ¢(Y(F(2) = ¢(P(F) () =
= &(P(F) (@) = ($P)(F)(2)
for all 22", and hence (Po¥)"(F)=($-P)(F).

2. Continuity and dificrentiation

Theorem 2.1. Let ®: D C—C and F£D. Then & is continuous at F, if and
only if @ is continuous at Fo(x) for all x€T.

PrOOF. If @ is continuous at F, and a€T, then using the function F: D—-M
defined by )
F(z) = Fy+(z— Fy(2))e,,
we get

:_].i}l_':}::) ®(z) = :_l‘i;:}:) D(F(2)" () = :.}.iﬂ},) B(F(2))" (2) = B(F) " (1) = #(Fo(2))

and so @ is continuous at F,(x).
Conversely, if @ is continuous at F () for all 2", then we have

}in}uﬁ(l-‘)“(a) = }1n;ﬂ¢(ﬁ(a)) = @ (Fo(x)) = B(F)  (2)
for all a¢TI", and hence }Ln}_ $(F)=®(F,), i.e., P is continuous at F,.

Proposition 2.2. Let DcC such that D=C, and suppose that I is not finite.
Then D has empty interior in M.

Proor. Let FEOR and z€CN\ D. For each finite subset 4 of I', let 2,6\ A4
and
Fy= F+(:-:—F'(14))e“,
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and consider the family of all finite subsets of I" directed by set inclusion. Then, it
is clear that (F,) is a net in M\ D such that

namely F (2,)==z for all finite subset 4 of I' and Ilmf (z)= F(x) for all z¢T.
Thus, F cannot be an interior point of D in M.

Corollary 2.3. If I' is not finite, then J has empty interior in Y.

Proor. This follows immediately from the above proposition, since
J=(C\.{0}))".

Definition 24. Let &: DcI—-IM and F,iD. If F, is a limit point of
(Fo+ )N D in M and the limit

@'(F) = lim (F—F)~(®(F)~®(F,)

exists in M, then @ is said to be differentiable at F, and @'(F,) is called the
derivative of @ at F,.

Proposition 2.5. Let D—C and F,¢9M. Then F(, is a limit point of (F,+J5)ND
in M if and only if Fy(2) is a limit point of D in C for all a€T.

PrOOE. If F, is a limit point of (F,+.#)\ D, then there exists a net (F,) in

(Fo+2)ND such that llmF F,. Thus, for each a€rl, (F(u)) is a net in
D~ {F(2)} such that llmF (:)_F (2), and so F,(z) is a limit point of D.

To prove the convcrse suppose that Fy(x) is a limit point of D for all a£T.
Then, for each acrl’, there exists a sequence (z,(x)) in D\ {F,(2)} such that
Jll‘l’l-,‘(ﬂt)—F‘)(I) Define

F,= 2 z,(a)e,.
acrl
Then, we have F,(x)=z,(x) for all 2. Thus, (F,) is a sequence in (Fo+5)ND
such that lim F,=F,, and so F, is a limit point of (Fy+.#)" \ D.

Corollary 2.6. WM is the derived set of J in M.

PROOF. By the above proposition, every FEIN is a limit point of (F+J)N.S,
since F(x) is a limit point of C\ {0} for all x<T.

Theorem 2.7. Let &: DcC—~C and F€D. Then & is differentiable at F, if
and only if ® is differentiable at F(a) for all acT'. Moreover, in this case

(D) (F,) = (@) (F)
holds.

PROOF. Suppose first that @ is differentiable at F,, and let xcI". Then, by
Proposition 2.5, F,(x) is a limit point of D= (F (2)+ )1 D. Moreover, using
the notation

F(2) = Fy+(z—Ey(2))e,,
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we can infer that ) e
lim (== £,)) (@) 0(Fo@) =
= (F(2)" (@) — Fo(@) (P (F(2)" () — P (£ () =
= lim ((F(2)~F) ™ (B(FE)~B(F))" (@) = (3 (F)" ().

and so @ is differentiable at F,(z). ~
Suppose now that @ is differentiable at F,(«) for all «<I'. Then, by Proposition
2.5, F, is a limit point of (F,+.#)N D, and moreover,

Jim (F—F)~ (®(F)=3(F)" (@) = lim (FG)—F,() " (@(F @) — @ (£o(2) =

= ‘p’(ﬁo(ﬁ))
for all 2£€rI', and hence

,!-i_."}o(F_ Fo)  (B(F)—&(Fy)) = §¢"(Fo(1))€=~
This shows that & is differentiable at F, and (®) (Fy)=(9’)" (F).

3. The exponential function

Definition 3.1. Let exp: M —~IM such that
exp F= 3 exp F(a)e,

aeElr

for all FeM.

Remark 3.2. 1t is clear that the above definition is correct, and that this ex-
ponential function is an extension of the complex one.

Theorem 3.3. For every FeIN,

exp F= 2 :

_F"
0. 713

in M.
Proor. This follows immediately from Corollary 1.4.
Theorem 3.4. The function exp is differentiable and
exp’ = exp.
PrOOF. This follows immediately from Theorem 2.7.
Theorem 3.5. For every F, GEINR,
exp (F+G) = exp Fxexp G.
ProoOF. This follows immediately from the fact that
(exp (F+G))" (2) = exp (F(x) +G(2)) = exp F(x) exp G(x) =

= (exp F)" (2)(exp G)" () = (exp Fxexp G)” ()
for all acT.
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Theorem 3.6. For F, GEM, we have exp F=exp G if and only if there exists
HeM such that 6(H)<Z and F=G+2niH.

Proor. Clearly, we have exp F=exp G if and only if exp F(x)=exp G(),
is ﬁ(ﬁ(a)—é(a))ez for all 2¢T. Hence, by Remark 1.6, the assertion is quite
obvious.

Theorem 3.7. We have
expM = £,

Proor. This follows immediately from the facts that exp C=C\ {0} and
F=(C\{0))".

Remark 3.8. A special case of this exponential function can be used to relate
translation and differentation in the algebra of periodic generalized functions
[6, Remark 4.7].
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