The use of fractional calculus in obtaining
Legendre functions of arbitrary index

By BERTRAM ROSS (West Haven, Conn.)

Summary: Tt is not the purpose of this paper to produce a new result as classical means of
obtaining Legendre polynomials of arbitrary index are well-known. But, it is often considered to
be of importance that known results be produced by alternative techniques. This paper exemplifies
the usefulness of the connection of a derivative of arbitrary order and a special function, and a
usefulness of the generalized Leibniz rule for a product. No claim is made that the fractional cal-
culus method is better. However, the little known method of fractional operations has often proved
to be useful in simplifying complicated functional equations and deserves a more general recogni-
tion and use.

The idea that Legendre polynomials P,(z) can be defined for arbitrary value
of n stems from two sources. One is Murphy's expression for P,(z) as a hyper-
geometric function in 1833, and the second is Schléifli’s contour integral for P,(z)
in 1881. These details are given in [1].

It will be worthwhile to refresh the reader’s memory regarding the commonly
used notations of hypergeometric functions.

ab N a(a+1)b(b+1) »
1lg” 2lg(g+1)

is called a hypergeometric series because it is a generalization of the geometric
series 14+x+x*+.... The notation (a),, (b), and (g), are of the form

(1 1+

= ala 1 15+ . (@ k—1)= T8TH)
@ { I'(a)
(@y=1 and (I} =k!.
The notation
b Fi(a, b; g; %)

has the following meaning. The subscript 2 preceding F denotes that there are
two parameters of the form (2) and these become factors in the numberator as
shown in (4). The subscript / after F denotes one parameter of the form (2). The
parameters between the semicolons are denominator factors. Using this notation
(1) can be written conveniently in summation form:
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It can also be shown that
y o Tk=v)  (=1Fr(v+1)
) E%=T = Ta+v—h

Murphy’s expression for the Legendre function of arbitrary index in terms
of (3) is

(6) P,(z) = F(=v, (v+1); 1; (1—2)/2).
Euler’s identity is
(7 oFi(a,b;e;s) = (1—s5)""F,(a, c—b; c; s/(s—1)).
With the use of Euler’s identity the right side of (6) can be written as
_ (1—-2)/2 ]
—(1=2)2)' s F =V, =vil; ——],
(1=(1-2) )_Fl[ v, —v; 1 0—22-1
or
1+z
(8) e ] oFi(—v, —v; 1; (z—1)/(z+1)).
In summation form the above is
R TRy (=v(=h o AN v—k
©) P =5 3 T @D+,

where from (5)
(== =L (v+1)/F(1+v=k)].

The result (9) seems quite easy and straightforward to obtain by the formal
prozzdure just given. But in all fairness one must admit, on the other hand, that
the apparent ease was the result of the use of identity (7) which is neither easy
nor straightforward to establish.

Theorem. Legendre functions of arbitrary index represented by (9) may be ob-
tained without the use of Euler’s identity (7). The form (9) may be generated by use
of the Riemann—Liouville operators of arbitrary order.

ProOOF. The Riemann—Liouville operator D; ¥ for integration of arbitrary
order is defined by the definite integral

(10) DVf(s) = % [ s=r-tf@ydr, Re(v)=>0.

When ¢=0 and ¢= —= we have Riemann’s and Liouville's definitions respectively.
For differentiation of arbitrary order we have

d"

(11 Dif() = Dr*f(s) = 5 f (s=0P~'f @) dr,

F()

where v=0, v=m—p, m is the least integer greater than v, O<p=1, and d™/ds"™
is the ordinary mth derivative operator.
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For a wide class of functions the integral on the right above, when the lower
terminal of integration is zero, is a beta integral and is easily evaluated. It can
readily be shown that the hypergeometric function ,F;(a, b; g; s) can be expressed
by the Riemann—Liouville operator D . Details are given in [2]. The connection
is this:

FAR) oo Sictechidit- =
(12) 2F1(a, b :5) = £ 800D P (1 -9) ™),
where D79~ denotes the fractional operation of order (g—5) of the product
sb=1(1 —5)=9,

Consider now the hypergeometric function F given in (6) whose parameters are

a=-v, b=v+], g=1, s=(1-2)/2
Then (12) becomes

1 _
-) — v _ —_ YOVl —(1 — » v
(13) P(2) = iy WPl-aa((1=2/2 (1= (1= 2)2)"
For simplification let 1—z=2u, and the above becomes
) i V.Y v
(14) P,(z) = ToID oDyu’(1—u)".

We will now apply the Leibniz rule for the derivative of arbitrary order of
a product which is

(15) oDi f(x)g(x) = g: [,';] oD f (%), DY " g (x),

where D" is the ordinary nth differentiation operator d"/dx", D'""~" is the

Riemann fractional operator and |, | is the generalized binomial coefficient

F'(v+1)/n!IF'(v—n+1). In (14) choose «* to be the function g to which a frac-
tional operation will be applied, and choose (1 —u)" to be the function f to which
ordinary differentiation will be applied.
The fractional operations for (D)~"u" for n=0, 1, 2, ..., n are obtained from
(10) and (11):
oD’ = I'(v+1), oD u" =T'(v+Du,

r('&'+ I,l_uz y Dy-nyY = r(\'+1) u"
r(3) S  T(n+l)

The binomial coefficients for n=0, 1 and 2 are 1, v and v(v—1). The first several
terms of (15) where f(u) is (1—u)" and g(v) is u' are

(16) D1 =w)u’ =T(v+ DU =u)—=v2rv+Du(l—u)" +
+[v(r=DEF v+ Duz(l—u) -2 —....

A compact formulation of the above is

oDy 2’ =

Gty e R s (=DMt —u)y*
AU SRl ST S T TP
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After replacing u with (1—2)/2 in the above, (14) becomes

o T = (z—DA(z+1)~*

It is easy to verify that the above agrees with the Legendre polynomial P,(z)
when v=n.

This last result is (9) but was obtained by the means of the fractional calculus.
This example again shows the power of fractional calculus and we may expect
its influence to be felt in the literature and in the teaching of the mathematical

sciences [3].
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