Divisibility properties in second order recurrences
By PETER KISS and BUI MINH PHONG (Eger)

1. Introduction

We define the generalized second order recurrences G by integers G,, G, and
(l) Gn=A'Gn—1-B'Gn—2

for n=1 where 4 and B are fixed integers with 4 - B=0. We shall denote the sequence
G by R if G,=0 and G,=1. So R,=0, R,=1 and

R,=4 'Ru-l_B'Rrs—E

for n>1.

Throughout this paper, the integers 4 and B will be fixed.

An integer g=g(m)=0 is called the rank of apparition of m in the sequence
G if m|G, and m{G, for 0<n-<g. In particular if G=R, the rank of an integer m
in the sequence R is denoted by r=r(m).

Note that g(m) and r(m) are not sure to exist for every integer m. In the
following, we shall say g(m) (resp. r(m)) exists in a sequence G if G (resp. R) has
a term G, (resp. R,) with m|G, (resp. m|R,) and n=0.

The purpose of this paper is to study the conditions of the existence of r(m) and
g(m) and to find connections between g(m) and r(m).

We improve a theorem of V. E. HOGGATT JR. and C. T. LONG [4] concerning
the existence of »(m) (Theorem 2.1.), furthermore we give a necessary and sufficient
condition for m|G, (Theorem 3.1. and 4.1.). We give a necessary and sufficient
condition for the existence of g(m) in every sequence G with fixed 4 and B
(Theorem 5.1. and Corollary 5.1.), generalizing some theorems of P. A, CATLIN
[11] and D. M. Broom [8]. These theorems were proved only for prime m and for
the case A= — B=1 respectively. Furthermore we show that the solution of Fermat’s
Last Theorem is related to the properties of r(m).
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2. Preliminary results and lemmas

Let us denote the discriminant of the polynomial x?— Ax+ B by D=42—4B.
It is known that r(m) exists for any integer m for which (m, B)=1. Moreover

(2) m|R, if and only if r(m)|n

3) r(p)| (p—(D/p))

(4) r(pf) = p*~*-r(p)

(5 r(pit-ps ... pi9) = [r(p), r(p8), ..., r(pf)]

where p and p; (0<i=¢) are primes; p{B; p{B; [a, b, ...] denotes the l.c.m. of
a, b, ...; exk and p* is the highest power of p for which p*|R,,, (thus r(p)=...
.=r(p)=r(p**")); furthermore (D/p) is the Kronecker-symbol. (see e.g. D. H.
LenMER [1], H. J. A. DupArc [2] or J. H. HALTON [3]).

First we prove the condition (m, B)=1 to be sufficient but not necessary for
the existence of r(m).

Theorem 2.1. An integer m divides one of the terms of the sequence R different
from Ry=0 if and only if m does not contain any prime p among its primefactors
for which p|B and p{A.

Corollary 2.1. The rank of apparition exists in the sequence R for every integer
m if B|A.

Corollary 2.2. In the case (A, B)=1 r(m) exists if and only if (m, B)=1.

PrOOF OF THEOREM 2.1. The condition is necessary. For if p|B and p{A4 for
one prime p and p|R, for t=1 then R,=A-R,_,—B-R,_, implies p|R,_; and this
leads to p|R,=1 which is a contradiction.

Now we shall show that the condition of Theorem 2.1. is sufficient. It is
enough to study the case (m, B)=1 because the statement of the theorem is well
known in the case (m, B)=1 (see e.g. V. E, HOGGATT JR. and C. T. LoNG [4]). Let
m=d-m" where (m’, B)=1, d=p$... p¢» and p;|B. By the conditions of the theorem
pild for i=1, ...,s. Let us consider the equation

[(n— !)2] [" -~]1—

l i] An—1-2 (_ Byi

(6) R,

i=0

which was proved by V. E. HoGGATT JR. and C. T. LonG [4].
n—1

L9 n—1 ot fAe S [";']
In (6) n—1=-2i+i=n-1- =il =], which implies (p,... p)t 2 \R,,-

So d|R; for any integer k for which [-k,);l]:;max (ey, ..., €,). But on account

of (m’, B)=1, there is an integer ¢ for which m’|R,. Furthermore it is known that
R,|R,, for any integers u and v (see e.g. P. BUNDSCHUH and J. S. SHivE [5]), and so
R, | R;, and R,|R,, which implies m=d.m’|R,,. This proves our statement.

We shall need some lemmas. For any integers k, n, t and for any sequences G,
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Lemma 1. G,,;,=R,-G,,1,—B-R,_1-G,=R,,,-G,—B-R,-G,_, or in par-
ticular
Riux=RRiyy—B-R_,*R, =R, Ry—B-R,- Ry,
and
G, = R,+G,~B+R;_,*G,.

Lemma 2. R;,.,=Rf,, (mod R?).
Lemma 3. R,,=k - R, R¥;] (mod R?).
Lemma 4. G,,.,=G,+ R, (mod R,)).

Lemma 5. If p is a prime, (Gy, Gy, p)=1 and p|(G_,, G}) then p|(A, B) or
p|B, p|G, and piA.
Lemma 1. was proved by D. JARDEN [7] (p. 46).

PrOOF OF LEMMA 2. We shall prove it by induction on k. The lemma is obvious
for k=1. If the lemma is true for one integer 7, then using Lemma 1. and the

relation R,|R,,
Risne+1 = Ra+ny+: = Ry+1*Ris1— B Ry R, =
= Ry+1°Risy = Ri1} (mod RY),
and from this the statement follows.

PrOOF OF LEMMA 3. The proof again goes by induction on k. The statement
is obviously true for k=1. If the lemma is true for one integer i/ then using (1),
Lemmas | and 2, we get

Rii1ye = Rys¢ = Ryyy*R—B+Ry-R,_, =
=R,,*R—B-i+R,*Ri;1* R, =
='Ri7}-R+(Ruy—i-B-R_)) = Ri1-R(i+1)+ Ry =
= (i+1)+R,-Ri,, (mod R?)
which proves the statement of Lemma 3.

ProOF oF LEmMmA 4. We get by Lemma 1. and Lemma 2. using the relation
Rl"Rkl

Gusn = Ri41°Gp— B+ R+ Gyy = Ryy41° G, = G,y - Rt.; (mod R)
which proves the lemma.

PrROOF OF LEMMA 5. Let p be a prime and pl(G,_,., G,). If p{B then (1) implies
plG, _, which leads to p|G, and p|G,. But this contradicts the condition (G,, Gy, p)=1,
thus p|B. If p{A4 then G,_,=A-G,_,— B-G,_; implies p|G,_, for k=3 and this
Jeads to p|G, (the relation p|G, does not follow because R_, is not sure to exist).
So p|4 or p/A and p|G,.
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3. Connection between r(m) and g(m)

It is known for the sequence R that if r(m) exists and (m, B)=1 then m|R,
if and only if r(m)|n; furthermore we know an upper bound for »(m) (see part 2).
For similar questions in sequences G only sufficient conditions are known. It was
mentioned in [11] by P. A. Catlin that if m|G, then m|G,, 4.,(m). In this part we
show that if g=g(m) exists then m|G, if and only if n=g+k -r(m), furthermore
we give an upper bound for g(m). As an application of this result we generalize
a theorem of D. M. Broowm [8]. If there exist integers b and d for the sequences
G and G’ such that G,=(—1)!-G,., for all n (i.e. G’ can be obtained from G
“by translation™ together with a possible uniform sign change) then G and G’ are
called equivalent. By definition (1) we may extend the definition of the sequence
G for negative subscripts, too. D. M. BLooMm proved; if A=—B=1 and every
positive integer divides at least one term of a sequence G, then G is equivalent ot
the sequence R. We extend this theorem to general sequences.

We prove two theorems.

Theorem 3.1. Let G be a sequence given by the integers A, B, G, and Gy and let
m be an integer. If (m, B)=(Gy, Gy, m)=1 and the sequence G has terms divisible
by m (i.e. g(m) exists), then g(m)=r(m) and m|G, if and only if n=g(m)+k «r(m)
Jfor one integer k.

Corollary 3.1. Let m=p§-ps... ps be an integer (the p;'s are distinct primes)
and (m, B)=(G,, Gy, m)=1. The sequence G has terms divisible by m if and only
if g(pf) exists for i=1.2, ....s and the system of congruences

x = g(pf) (mod r(p§1))
x = g(pg*) (mod r(ps))

x = g(p&) (mod r(pe))
is solvable.

Theorem 3.2. Let us define a sequence G by the integers A, B, G, and G,, where
A=0, B<0, (A4, B)=(G,., G,)=1 and let the sequence G be monotone from a sub-
seript ny onwards. If for any integer m g(m) exists if and only if r(m) does, then the
sequences G and R are equivalent.

PROOF OF THEOREM 3.1. Let us suppose that G has term divisible by the integer
m, i.e. g=g(m) exists. (m, B)=1 so r=r(m) also exists. If g=r (=2) then g has
the form g=1+s where O0=s<r. On account of (2), Lemma 1. and Lemma 5.

0=G,=R,G,—B-R,_,-G;=—B+R,,_,-G;, = G, (mod m)

which does not contradict the definition of g only in the case s=0. But 5s=0 i.c.
m|G, shows that the sequence G is the sequence R multiplied by G, modulo
and from this follows G,=0 (mod m). So g=r is impossible. Thus g=r and g=r
only if m|G,.

By Lemma 4. we get

Gir+g = G, RE,, =0 (mod m)
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thus m|G, if n=g+kr. So it suffices to prove that m|G, implies n=g+kr. We may
assume n=g+s and s=0. By Lemma 1. we get

0=¢G,= Gg+s =i R.s'Gg+1_B'Rs—1'Gg = Rs'Gg-i—l (mod m),

and so R,=0(modm) since (m, B)=1, m|G, and Lemma 5. together imply
(m,G,.,)=1. Using (2) we obtain from this s=kr for one integer k, which com-
pletes the proof of Theorem 3.1.

PrOOF OF COROLLARY 3.1. Now m=p{t...p¢s and (m, B)=1, so r(pf) exists
for i=1,2, ...,s. But m|G, implies pf:|G, and by Theorem 3.1. x has the form
x=g(pt)+k-r(pf) which implies the statement.

PrOOF OF THEOREM 3.2. We may assume that the terms of G are positive for
positive subscripts and the sequence G is increasing. Namely, if G is decreasing,
we may replace G by —G (G and —G are equivalent) and G may be generated by
two arbitrary consecutive positive terms as initial terms G,, G,. The sequence
R is also increasing by our conditions. So

(7 g(G)=1t and r(R)=s

for any 7 and s. Let G, be an arbitrary term of G. By our conditions G,|G, leads
to G,|R, for some integer k and this implies, using Corollary 2.2., (G,, B)=1.
From this follows, as in the proof of Lemma 5., (G,, G,,G,)=1. Let us use the
following notations; r=r(G,) (and so G,|R,), g=g(R,) (and so R,|G,). We get
from (7) r(R,)=r and g(G,)=n, furthermore using Theorem 3.1. O=n=r, O=g=r
and we have only one subscript i with m|G; and 0<i=r(m). Therefore G,/R, and
R,|G, imply G,/G, and from this n=g follows. Thus G,|R, and R,|G, and so
G,=R,. We get similarly G,.,=R, and G,,.,=R, for some integers ¢ and s with
r<I[=<=8§,

Thus 0<=G,=R,<G,.,=R,<G,..=R,, and from this
Ryy=A-R—-B:R_, =4 'R:_B'Rr e Gn+9. = R

follows since B=<0. But it is truec only if 1+ 1=y, i.e. G,,, and G, are consecutive
terms of the sequence R, so that the sequences R and G are equivalent.

Remarks. a) The statement g(m)=r(m) in Theorem 3.1. cannot be improved
in gzneral since the sequence G may be generated by initial terms G,=R, and
G,=R, ., with any integers k.

b) The condition (G,, G,)=1 in Theorem 3.2. is necessary. In fact, e.g. if
G,=0, |G,|>1 and (G,, B)=1 then G,=G,-R, for all integers n and so the se-
quences G and R are not equivalent but the conditions of Theorem 3.2. hold, ex-

cept (Gy, Gy=1.

4. On terms of G divisible by prime powers

In part 2 we have given the condition for the existence of terms in the sequence
R which are divisible by an integer m (Theorem 2.1.). This raises the following
question; what is the condition for the existence of terms in G divisible by m? The
question has been studied for primes p.
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Let » and f be the roots of the polynomial

f(x) = x*—Ax+B.

In_ﬁu
2—fi
o=f. M.HALL [9] has given the terms of the sequences G in a similar form;

G,=P.2"—Q. " where Pz(;"l}—ﬁ:-(é and Qz%
the existence of g(p) with help of another sequence. M. WARD [10] proved that
if the ratio of « by f is not a root of unity, then the sequence G has terms
divisible by p for infinitely many primes p, furthermore he proved that g(p) exists.
ko ©

Now, and in the next part we generalize some theorems of P. A. Catrix [11].
He proved that if @ and b are the solutions of the congruence x*— Ax+ B=0 (mod p),
then g(p) exists for every sequence G, except when G;=G,-a and G,=G,-b
modulo p, if and only if r(p)=p—1. Furthermore he proved that if r(p)=p+1
then g(p) exists for all sequences G regardless of initial values G, and G,. and
conversely. We give a condition for the existence of g(p"), and using this we extend
P. A. CATLIN's theorems to the case of prime powers.

It is well-known that the terms of the sequence R have the form R,= for

, furthermore he studied

if and only if the rank of p in the sequence is a divisor of r(p).

Theorem 4.1. Let p be an odd prime, let (p, B)=(p, Gy, Gy)=1 and let the
sequence G have terms divisible by p (i.e. g(p) exists). Furthermore let s be an in-
teger for which g(p)=...=g(p*)=g(p**"). There are terms in G divisible by p**"™
for any n=0 if and only if r(p*)=r(p**h).

Corollary 4.1. Let p be an odd prime with p{B and (p. G,. Gy)=1 for a sequence G.
If g(p) exists and r(p)=r(p*) then there are terms in G divisible by p" for any
positive integer n.

Corollary 4.2. Let p be an odd prime. There are terms in G divisible by p" for
ary integer n and for every sequence G if and only if p{(A, B) or r(p)=p+1=r(p°).

Corollary 4.3. Let p be an odd prime for which p/B and let o and  be the roots
of the congruence x*—Ax+B=0 (mod p). There are terms in every sequence G,
divisible by p" for any n=0, except when G,=a+G, or G,=p -G, modulo p, if and
only if r(p)=p—1=r(p®. The condition r(p)#r(p?) is necessary only in the
case n=>1.

PrOOF OF THEOREM 4.1. Let p be an odd prime, p{B, (p, G,, G))=1, g(p)=...
...=g(p)=g and r(p*)=r. r(p®) exists by the condition p{B. By Theorem 3.1.
p*\G, if and only if n=rx+g for some integer x. So if g(p**') exists then it has
the form g(p**')=rx+g, too. By Lemmas 1, 2 and 3 we get

Gxig=Ryx41°Gy—B-R)x -Gy, =
= R;,‘“-Gg__x.g.(;‘g_l.R:r:ll ‘R, =
o Rf‘:ll'(GQ'RHI_B'RHGQ—I'-") (mod R?).
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But p’|R, implies p’*1/R? and pfR,., (p!R, and p|R,., leads to a contradiction
with the conditions), therefore p**!|G,,., if and only if

(8) G,°R,.1—B+R,-G,_,-x=0 (modp**!).

(8) does not hold for any integers x if p**1R, that is r(p*)=r(p**!), and so the
condition of Theorem 4.1. is necessary.

We prove that the condition is sufficient. If r(p*)=r(p**') then dividing the
congruencs (8) by p’, the coefficient of x will be coprimz to the modulus p, therefore
(8) is soluble for x and so g(p**!) exists. But on account of (4) r(p’)=r(p**")
implies r(p**")=r(p**"*!) for any integers n=90, therefore the condition of
Theorem 4.1, is indeed sufficient.

Remark, We note that g(p)=g(p**") doss not always imply r(p*)=r(p*™).
For example, if 4=4, B=3, G,=2 and G,=1 then R={0,1,4,13,40, 121, ...}
and G={2, 1, -2, —11, ...}. Here g(11)=3=g(112) but r(11)=r(11*)=5.

PrOOF OF COrROLLARY 4.1. It follows immediately from Theorem 4.1, since
by (4) r(p)=r(p®) implies r(p")=r(p"*?) for any integers n=>1.

PROOF OF COROLLARY 4.2. If in every szquence G there are terms divisible by
p" then by Theorem 2.1. p/(A, B) or p/B.
If pi(A, B) then by Lemma 1

G,‘ - Ri.Gl_—'B.Ri—l.Gll

and from this p"|G; follows for large enough integers /i (see the proof of
Theorem 2.1.).

Now let us study the case p{B. If every sequence G has terms divisible by
p" then by P. A. Catlin’s theorem (s2e above) r(p)=p+1. We must yet show that
r(p)#r(p®. For this, by Theorem 4.1., it is enough to give a sequence G for which
g(p)=g(p*. There exists such a sequence, for example the sequence generated
by the initial terms G,=1, G,=p has such properties. So the first part of our
statement is true.

The second part of the statemant is also true. For if r(p)=p+1=r(p? then
p{B and we may assume (p, G,, G,)=1, and in this case Corollary 4.1. and P. A.
Catlin’s theorem imply the statement. Namely if p|B then (D/p)=1 or 0, and this
contradicts r(p)=p+1. Furthermore if (p, G,, G;)=1 then we may examine the
Gy

sequence G, for which Gg=—-, G{:%, instead of the sequence G where G; and

G; are integers and (Gg, Gy =1.

PROOF OF COROLLARY 4.3. Let r(p)=p—1. Then by P. A. Catlin’s theorem
(see above) every sequence G has terms divisible by p except when G, =G,-a or
G,=G,- f (mod p). In this case, by Corollary 4.1., if r(p)#r(p? then the statement
is true. We may use Corollary 4.1. since p{B and we may assume that
(p, Gy, G,)=1. Namz:ly if the statement is true for the case (p, Gy, G;)=1 then it
is true for all cases.
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Conversely, let us suppose that every sequence G has terms divisible by p*
(n=1, 2, ...) except when G,=G,-a or G;=G,-f (mod p). In this case p has similar
properties and so r(p)=p—1 (using P. A. Catlin’s theorem). Now we have only
to show that r(p)=r(p?. By Theorem 4.1. it is sufficient to find a sequence G for
which g(p)=g(p?) and the conditions hold. The sequence G generated by G,=1
and G, =p has such properties. In this sequence obviously g(p)#g(p? and G, ZG, - «,
G,#G,+f (mod p) since otherwise =0 or f=0 (mod p) which contradicts the
condition p{B.

5. The divisors of all sequences G

In part 4 we quoted a theorem of P. A. CatLiN [11]: if p is a prime and
r(p)=p+1 then in every sequence G there exist terms divisible by p, and con-
versely. D. M. BLooM [8] has studied a similar problem in the sequences G for which
A=—B=1. He proved that all sequences S have terms divisible by an integer

m if and only if r(m)=m-. ] l+%]. Here the sequence S is defined by
pim

S,=S,-1+ S,-, with any S, and S;, and in this case r(m) is the rank of apparition

of m in the Fibonacci sequence F (F,=0, F,=1 and F,=F,_,+F,_, for n>1).

In this part we show that D. M. Bloom’s theorem can be extended to general

sequences G and our result includes P. A. Catlin’s theorem, too. As a consequence

we give all integers m for which any sequence G has terms divisible by m.

Theorem 5.1. Let m be an integer with condition (m, B)=1. All sequences G with
arbitrary initial values G, and G, have terms divisible by m if and only if

r(m) = m-Pg [1+-;;—]

(p runs through the distinct prime divisors of m).

Corollary 5.1. Let m be an integer, e=>1 any integer and (m, B)=1. Every se-
quence G has terms divisible by m if and only if

a) m=p and r(p)=p+1; or

b) m=p¢ and r(p)=p+1=r(p*; or

c) m=2p°, p#3, 3 (p+1), r(p)=p+1=r(p* and r(2)=3; or

d) m=2p, r(2)=3, 3{(p+1) and r(p)=p+1; or

e) m=2 and r(2)=3; or

f) m=2* and r(2%)=2*"1.3,
where p is any odd prime.

PROOF OF THEOREM 5.1. Suppose that every sequence G independently of the
initial values G, and G, has terms divisible by m, that is g(m) and r(m) exist for
every sequence G. So we can replace every sequence G with another sequence which
is equivalent to G and in which m|G,. Let us consider only those sequences for
which (G, G,)=1. By Theorem 3.1. in these sequences g(m)=r(m). Let us reduce
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the terms of the sequences modulo m, these reduced terms being denoted by G,,
and let us consider the sequences [0; Gy], [Gy; Gol, ..., [Gmy—15 0]. The number
of pairs is r(m) in every pair-sequence and 0<G,<m for i=1.2. ., r(m)—1 since
G;=0 contradicts Theorem 3.1. Furthermore by Lemma 35, (m G;.1)=1 for
every integer j. It has been supposed that (G,, G;)=1 and m]Go, which imply
(m, G;)=1 and so we have ¢(m) distinct pair-sequences modulo m (¢ denotes the
Euler totient function). In a pair-sequence evidently there do not exist identical
pairs. Furthermore two distinct pair-sequences have no common pair. For if
[G!; G!.,)=[G}; G/,,] for sequences G’ and G” then by (m,B)=1 we get
1G;..1; Gil= [G,’" 1; G¢] that leads to [0; G;]=[G{_;; G{_;.,] and so k=i that is
G’ and G” cannot be distinct modulo m. This implies that we have written
r(m)-@(m) distinct pairs in the pair-sequences.

Now we show that evety pair [a; b] for which (a, b, m)=1 and 0=a,b=m
occurs among the r(m)-@(m) pairs. Let us consider the sequence G for which
Gy=a and G,=»b. P. BUNDSCHUH and J. S. SHIUE [6] proved that if (m, B)=1 then
G is purely periodic modulo m and for the length h(m)=h of the period
h=r(m)=r. Thus G,=a=G, and G,,,=b=G,,,; modulo m. But G has a term
divisible by m (on account of our supposition), i.e. g(m)=g exists and so by The-
orem 3.1., G,,,,=0 (mod m) for every integer k and g=r=h. From this follows
that there is an integer ¢ for which g+tr=h<h+1=g+(t+1)r, and so the pair
[a; b]=[G,; G, ,] occurs in the pair-sequence for which the initial term is [0: G, . ,]
and here, by Lemma 3, (m, Gy ppin)=1.

Thus the r(m)-@(m) pairs exhaust each possibility. But D. M. BrLoom [8]
proved that the number of pairs [a; b], for which (@, b, m)=1 and O0=a,b<=m,

is @y(m)=m?*. H(l —p—L], so we get
plm

r(m)-@(m) = m?- [] l—-—l-]

pim

which implies r(m)=m- [[ [l+—]-]. This proves the first part of the statement
of Theorem 5.1. pm p

Conversely, assume that (m, B)=1 and r(m)=m- J] I +pl]’ and let us
|m
study the sequences G for which G,=0, G,=a, 0<a<m a;d (a, m)=1 (in this case

G,=a-R, for any integer n). Forming the pair-sequences modulo m from these
sequences, as above, we get distinct pairs and the number of these pairs is
r(m)-q@(m)=q@,(m). So we got each pair [a; b] in the pair-sequences. From this
follows that every sequence G, for which (G,, G,)=1, is equivalent modulo m to
one of the ¢(m) sequences, that is if (G,, G,)=1 then G has terms divisible by m.
But if (G,, G;)=d#1 then G,=d-G, for every integer n where the sequence G’
is defined by G'=%, G{:% and on account of (Gj, G;))=1 G” has terms di-
visible by m, so the sequence G has terms divisible by m, too.

Thus if r(m)=m- J] l+p—l] then every sequence G has terms divisible by m,.

plm
which proves the second part of the statement of Theorem 5.1.
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PrOOF OF COROLLARY 5.1. If (m, B)=1 and m= [] p{* (the p;s are distinct
primes) then by (3), (4) and (5) we get i=1

5 s 1
r(m) =[r(p§), ....r(p)] = JT pi*(p;+1)=m- ][] [H——].
i=1 i=1 Pi

By Theorem 5.1. every sequence G has terms divisible by m if and only if equality
holds. But equality holds if and only if r(p)=p;+1 and (r(p),r(p;))=1 for
1=i, j=s5 and i#j furthermore r(p)=r(pj) for e;=1. Therefore if every G has
terms divisible by m then m cannot have two distinct odd prime factors. Similarly
m cannot have the form m=2%.p¢ with ¢,>1 or p=3 and e=>1. From these the
statement follows.

6. Connection between r(p) and Fermat’s Last Theorem

In part 5 we have seen that every sequence G has terms divisible by a power
p° of a prime p only if r(p)=r(p*. The study of the condition #(p) =r(p?) is difficult
since it leads to the study of Fermat’s Last Theorem, as we are going to show.
We shall prove a theorem:

Theorem 6.1. Let p be an odd prime and (p, B)=1. r(p)=r(p*) if and only
f:f pgiRp-(Dfp)‘

Let ¢ be an integer and let us consider the sequence R for which A=¢+1,
B=gq. In this case the equation x*—Ax+ B=0 has roots x,=¢ and x,=1 so the
terms of R are

- qll_l

g—1"

Now D=A*—-4B=(q—1)* therefore (D/p)=1 for all primes p if p{(g—1). From
this follows by Theorem 6.1. that if p{(g—1) then p*|R,_, if and only if r(p)=r(p?)
that is ¢g?~'=1 (mod p?®) if and only if r(p)=r(p?.

On the other hand it is well known that the equation x?+)?==z? in case p/x)z
has integral solution only if g?~'=1 (mod p?) for every prime ¢=43 (this was
proved by A. WIEFERICH, D. MIriMANOFF, H. S. VANDIVER, G. FROBENIUS,
F. PoLLAaczek, T. MoRISHIMA and J. N. ROSSER; see [12], p. 225).

Comparing the two results we get that the equation x?+)?=z? in case pixyz
has integral solution only if in the sequences R, for which A=¢+1 and B=g,
r(p)=r(p*®) for every prime ¢=43 and p{(g—1).

Finally we prove Theorem 6.1.

n

PROOF OF THEOREM 6.1. We know that r(p)|(p—(D/p)) and so p—(D/p)=s-r(p)
for some integer s (see (3) in part 2). By Lemma 3 we get

Rovp) =5 Ry R:(-p} +1 (mod Rf(p))

But p*| R}, P|R;..»y and (p, R, 1)=(p,s)=1 therefore p*R;,, =R, if
and only if p?|R, . that is r(p)=r(p?.
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