Almost additive functions on semigroups
and a functional equation

By ROMAN GER (Katowice)

§1. J. AczeL has asked in [1] what can be said about functions g satisfying
the conditional functional equation

gh 2o 1 1 1
1 +y)g(x)g(y) =0 implies — ' :
Here g is assumed to be of the type: S—K where (S, +) is a semigroup and (X, +, +)
is a field (both not necessarily commutative). As was shown in [8], equation [1] may
be reduced to the following one:

() f(x+))#0 and f(x) =0 and f() =0 implies f(x+)) =/(x)+f(»).

This proves that, in genuine, Aczél’s problem is of a (semi)group-theoretical nature.
It was also pointed out in [8] that even in the case where f is a real-valued function
defined on the real line R it may happen that equation (2) does not furnish any
information whatever about nonzero values of f. This shows that, in general, some
further assumptions concerning the greatness of f~1({0}) are rather natural. Under
such type of assumptions equation (2) has been solved in the class H9 where (G, +)
and (H, +) are two abelian groups. The commutativity assumptions were caused
by the fact that pE BRUUN’s [3] result on almost additive functions had been
used as a tool. With no essential changes Theorem 2 from [8] may be improved
by avoiding the commutativity assumptions since the above quoted de Bruijn’s
result remains valid in the non-abelian case, too (see [7]). Our main purpose here is
to extend the de Bruijn’s result to the case of almost additive functions defined
on semigroups being in a special case embeddable into groups (also without com-
mutativity assumptions). This question is directly connected to the problem of
extending of homomorphisms of subsemigroups to homomorphisms of groups
(compare [2]). Theorem 1 below yields a joint generalization of de Bruijn’s
main result from [3] and some theorems from [2]. In section 4 we apply our theorem
to Aczél's question regarding equation (1).

§ 2. Let (G, +) be a group (not necessarily commutative) and let S=2% be
a non-empty family of subsets of G closed under finite unions, hereditary with
respect to descending inclusions and such that jointly with a set UG it contains
the family {x— U: x€G}. In the sequel every such family will be called a proper
linearly invariant ideal (abbreviated to p.Li. ideal). The notion of a p.Li. ideal
yields a generalization of null-sets in the theory of Haar-measure and allows to
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introduce the notion *“‘almost everywhere™ in the usual manner (cf. also the section
devoted to ideals of negligible sets in [9]). Namely, a property 2(x), xcACG, is
said to hold f-almost everywhere in 4 iff A\ {x: 2(x)}¢S (for more details and
results as well as for examples see [5] and [6]).

Given a p.li. ideal # in (G, +) we put

2(F) = {MCG"“: V A M, :={yeG: (x,y)E M}c 5}.
UM)ES x€GUM)

Q(F) turns out to be a p.li. ideal in (G2 +).
Given a set Z— G we denote by J(Z) the family of all sets of the form

O i +2U2)-),

where n is a positive integer, x;, );€G, i=1, ..., n, and all their subsets. It is readily
seen from this definition that #(Z) is the smallest set family contained in 29 such
that Z< #(Z) and all the conditions occuring in the definition of a p.l.i. ideal except,
possibly, that #(Z)26 are satisfied. For this reason #(Z) is called to be a linearly
invariant set ideal generated by Z.

§ 3. Now, suppose that we are given a p.Li. ideal # in (G, +) and that (S, +)
is a subsemigroup of (G, +) fulfilling the conditions

(3) S§-S=GC
and
(4) St .F.

Remark 1. (3) does not imply (4). Take, for instance, G=R? and S=]0, «)*.
Clearly S—S=R?*=G whereas the linearly invariant set-ideal J(S) (generated
by S) is proper, i.e. F(S)=2R"¥),

We proceed with some lemmas:

Lemma 1. For every s,1€S we have (s+ S)N(t+ S)4 £.

PROOF. Suppose the contrary, i.e. (s+ S)(7+ S)€# for some s, 7<S. Then,
for all u, ve S, we have

(5) (s+u+S)N(t+v+S)e s,
because of u+Sc S and v+ ScS. Since G=S—5= |J (S—u), we may find an
usc S such that vy:= —s+1+u,€S whence, in view 0‘}625),

t+ug+S = (s+v,+S)N(1+uy+ S)€ S

Consequently, S€.# which contradicts (4).

*) One may also give several further examples; this suprisingly simple one has been suggested
to me by M. SABLIK.
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Remark 2. A semigroup (S, +) is called to be left reversible iff the intersection
(s+ S)N(t+S) is non-void for any s, 7S (see e.g. [4]). Thus, Lemma 1 states,
in particular, that a semigroup under considerations is left reversible.

Lemma 2. For every s,t¢S we have (—s+ S)N(—1+5)é 4.

Proof. If we had (—=s+S)(—t+S)eF for some s,1€S then, in view of
the inclusion s+ScS, we would also get SMN(—1+s+S)é# and hence
(1+ S)N(s+ S)¢S4, contrary to Lemma 1.

Lemma 3. For every sets Uy, U,£F we have
G = (S\U)—(S\Uy).

PrROOF. Take an x€G=S—S and sets U,, U, 4. Then x=5—1,5,1 S, and,
on account of Lemma 2,

T = [—s+(S\UDIN[—1+(S\Up))4 4.
Thus, 7=0 and we may find an z such that

s+aeS\U, and t4a€S\U..
Now,
x=5—t=(s+a)—(t+a)c(S\UD—(S\UV)),

which was to be proved.

Lemma 4. Let UcS and u,s’, '€ S\ U. There exists a pair (s,1)<(S\U)*
such that s"—t'=s—1t and tcu+S.

PROOF. In virtue of Lemma 3 applied to U;:=U and U,:=—u+U we get
the equality
G =(S\U)-[S\(~u+V)]
G= U [(S\VU)—x].

xESN(—u+l)
This proves that for every ycG there exists an x&S\(—u+U) such that
v+xeSN\U. Take y:=s"—t"+u and a corresponding x. Then

si=8—=t'"+u+xeS\U

whence

and
t:=u+xc@+SNUcCc (S\U)N(u+S).

Evidently, s—7=s"—1" which ends the proof.

Now, assume that we are given two groups (G, +) and (H, +), a p.Li. ideal
S in (G, +), a subsemigroup (S, +) of (G, +) fulfilling conditions (4) and (5)
and a map f: S—H such that

(6) Jx+y) =f(x)+f(y) forall (x,y)eSN\M

for a certain set M<Q(J). By means of the definition of Q(#), there exists a set.
U(M)¢ # such that M .= {yeG: (x,y)¢ M} S provided xeG\U(M). We have:
the following
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Lemma 5. For every x,y,u,vé S\U(M) the equality x—y=u—v implies
J) =) =) —f(v).
Proor. Take x,y,u, vé SN\U(M) such that x—y=wu—v. Lemma 1 ensures
that (y+ S)N(r+ S)¢ #. Consequently, (—v+y+ S) S¢.#and hence
[—o+y+(SN\M)IN(S\M,)ES.
"This enables one to find an
SE([(— v+ +(S\MIIN (S\MI)\IM, U (—v+y+M,)].

For such an s we have
S€S, (u,5)éM, (v,s5)4M,

zi=—y+v+s€S\M, (whence (x,z)¢M)
and
(v, 2)e M.
On the other hand
X—y+v+s=u—v+v+s=u+s

i.e,

X+z=u+s
whence
(7) F)+£(2) = f(w)+£(s).

‘The definition of z gives y+z=v+s which implies the equality
@) =—f)+f(©)+f(s).

‘This compared with (7) gives our assertion.
Now, we are able to prove our main result:

Theorem 1. Let (G, +) and (H, +) be two groups (not necessarily commutative)

and let .5 be a p.li. ideal in (G, +). Suppose that (S, +) is a subsemigroup of (G, +)

fulfilling (3) and (4) and f: S~ H satisfies the additivity condition Q(5)-almost every-

where in S**). Then there exists exactly one additive function F: G—H such that
Flg=f J-almost everywhere in S.

PrOOF. Suppose that f satisfies (6) for a certain set Mc Q(F). Take a z€G=
=[S\UM)]-[S\UM)] (see Lemma 3). Then z=x—y, x,yeS\U(M). Put

F(2) :==f(x)=f(»).

‘On account of Lemma 5, the latter formula defines a function F: G—H. We shall
show that F is additive. For, take x, y¢G. We have

x=§8—-t, y=u—v and x+y=p—gq,

with ", t", u, v, p, g SN\U(M). According to Lemma 4 applied for U=U(M)
we may write
x=s5—t, s,teS\UM)

*) In other words, f is 2(.%)-almost additive.
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with

(8) t€u+S.
Obviously, we have p—g=x+y=s—t+u—v, i.e.
9 s—t+u=p—q+v.

Since x+y+¢ and x+t are members of S we infer, by Lemma 1, that
(x+t+S)N(x+y+g+S)4¢F whence

(—=y+1+S)N(g+95)§~.
Therefore, because of —y+t=v—u+t,

(v—u+t+S)N(g+S)¢s
and, consequently,
(—u+t+S)N(—v+q+S)¢s.
Thus, we may find a

wEl(—u+t+S)N(=v+g+SIN(—v+g+M)U (-v+g+M)U (—u+t+MHU

U(—u+r+M)UM,UM,).
For such a w we have
wE€—u+t+Sc S+ScS (cf (8),

2y 1= —t+u+weS\(M,UM),

Zyi=—q+v+weS\(M,UM,)
and
(10) (u,w)e M, (v, w)éM.

Relation (9) gives the equality
S+2z, = p+2z,
whence, because of s, p, z;,2,€S and (5, z))¢ M, (p, z,)¢ M, we get
(1n () +f(z) =f(p)+£(z2)-
On the other hand, since
t+z; =utw, q+z;=r0v+w,
(10) is satisfied as well as (f,z;)¢ M and (g, z,)¢ M, we may write
T +f(z) =f()+f(w), f(@)+f(z:) =f(©)+f(W).
Therefore, by means of (11),
S =f@O)+f () +f(w) = f(p)—f(q) +f () +£ (W)
(&) =fO)+[f () —f ()] = f(p)—f(9)
F(x)+ F(y) = F(x+y).

whence

ie.
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To prove that Flg=f J-almost everywhere in S, take an x€ S\U(M). Thus
x=s5—1t, 5, 1€ S. Since, in view of Lemma 2, the set

(=s+[SNUM)) N (—1+S\[UM)UM,])
is non-void (because it does not belong to .#) one may find a y< G such that

s+YeESNUM), t+yeS\(UM)UM,).
Obviously
x=s5s—t=(s+y)—(t+y)
which implies

(12) F(x) = f(s+y)—f(t+y).
On the other hand
x+(t+y) =s+y

and (x, r+)y)4 M. Consequently

fX)+f+y) =f(s+y)

which compared with (12) gives F(x)=f(x).
To finish the proof it remains to show that F is unique. Suppose that F; and
F, map additively G into H with

F,(s) = F,(s) =f(s) for seS\UWM)
and take an x€G; we have x=s5—1, 5, 1€ SN\U(M). Thus
Fy(x) = Fi(s—1) = Fy(s)—F,(1) = Fy(s)— F.(t) = Fy(s—1) = F,(x),
which means that F,=F,. This completes the proof.

Corollary 1. Taking S=G we obtain de Bruijn’s result [3] in the non-abelian
case (cf. also [7]).

Corollary 2. Taking S={0} we obtain Theorem 3 (and hence also Theorems
1 and 2) from [2].

§4. We proceed with the following

Lemma 6. Let (S, +) be a subsemigroup of a group (G, +) such that G=S— 8
and let Z— S satisfy the condition

for every positive integer k and for every s, sy, ...,5,
(O) ty, ..., ,ES there exists a t€ S+s such that

t,+t4Z+s; and s;¢ Z+t; 4+t for i=1, .., k.
Then the linearly invariant set ideal $(Z) (generated by Z) does not include S; in
particular F(Z) is proper, i.e. S(Z)#2°.

PRrROOF (indirect). Suppose that S€.#(Z), i.e. there exists a positive integer
k and elements x,, ..., Xx, V, ..., x€G such that

Y I:I [x+ZU(—Z)+y,).

i=1
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Since G=S—-S=J (§-5), we claim that for every y€G there exists an §< S such

SES
that y+5¢S. Take an §€8 such that y,+5,€S, an §,€S such that y,+§+5H5S
and so on up to §€S such that y,+5,+...+§€S. Put s:=§+...+5 and
s;i:=y;+s,i=1, ..., k. Evidently, s and s; belong to S, i=1, ..., k. We have

k
S+scl [x+ZU(-2)+s)]
i=1

whence

—s—Sc CI [—5,+ZU(—-2Z)—x]).

i=1

Repeating the above construction, one can find elements 7, #,<S, i=1, ..., k, such
that

k
—s—-S+icl) F54+2ZUC2)+8]
i=]

or, equivalently,
k
—f+S+sclJ [-4+ZU(—Z)+5)]
i=1

whence. in view of the inclusion S+sc —7+S+s, we get

k
S+sclJ[-4+ZU(—2Z)+s))
i=1

Therefore, for every 1€ S+s there exists an i€ {l, ..., k} such that
tE—t;+2Z+s; or t€—t,—2Z-—s;

L+teEZ+s; or S, €Z+t+1.
This contradicts (C) and ends the proof.

Remark 3. Note that in the case where S¢.#(Z) condition (C) is simply satis-
fied. In fact take 5, 8,, .... 5%; & s KRES and

(S +s)\_L§J1 [-t,+ZU(—2Z)+s;).

k
Such a ¢ does exist, because |J [—f;,+Z|J(—Z)+s;] belongs to #(Z) whereas
i=1

S+s5 does not. Thus t£S+s and
L,+t6Z+s; and s, 4Z+1+t¢

for i=1, ..., k. Consequently, condition (C) is equivalent for S not to belong to
F(Z). Observe, however, that (C) involves semigroup terms only.

The assumptions on a semigroup (S, +) we have been doing up to Lemma 6
imply that (S, +) is left reversible (see Remark 2) and cancellative (since (S, +)
was a subsemigroup of a given group). It is known (for details, see [4]) that a left
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reversible semigroup with the cancellation law is embeddable into a group (G, +)
in such a manner that S—S=G (*). This together with Lemma 6 enables one to
state a theorem on functions f: S--H fulfilling equation (2) with no use of the
corresponding group terms.

Theorem 2. Let (S, +) be a left reversible semigroup (not necessarily com-
mutative) with the cancellation law and let (H, +) be a group (not necessarily com-
mutative). Assume that = S—~H is a solution of (2) such that Z=f"1({0)) satisfies
condition (C). Then there exists exactly one additive function F: S—~H such that

F(x)=f(x) for xc S\Z.

PROOF. (S, +) is embeddable into a group (G, +) with G=S—S. Moreover,
F(Z) is a pl.i. ideal in (G, +) and S¢.#(Z) (see Lemma 6). Consider the set

M := {(x,y)€ 5% x€Z or y€Z or x+y€Z).

On account of Lemmas 1 and 2 from [5], M€ Q(F(Z)). Clearly, f(x+»)=f(x)+f(»)
for (x, )€ S™\M. Thus f is Q(#(Z))-almost additive. Making use of Theorem 1
we infer that there exists exactly one additive function F: S—H such that
E:={x€S: f(x)=F(x)}¢4. To show that ECZ it suffices to repeat the appropriate:
reasoning applied in the proof of Theorem 2 in [8].

As a corollary we get easily

Theorem 3. Let (S, +) be a left reversible and cancellative semigroup and let
(K, +, +) be a field (both not necessarily commutative). Suppose that a function
g: S—K is a solution of (1) such that Z=g~"({0}) satisfies condition (C). Then there

exists exactly one additive function F: S—+K such that g(x)z% Jor xe S\Z.

Finally, we shall present an example in which we are going to visualize that,
in our considerations, it was worth-while to handle semigroup terms only
(omitting the embedding procedure).

Example. Put N:={0, 1,2, ...}, S:=NX2N and consider a map+:SX S-S
given by the formula
(m, x)+(n,y) = (m+n,2"x+y), (m,x), (n,y)ES

(the sign + on the right hand side denotes the usual addition in N). It is not hard
to check that the pair (S, +) yields a cancellative and left reversible semigroup(**)
with (0, 0) as a neutral element. In spite of the fact that the set

Z,:= {(p,2)€S: z = p})

is rather “large” in S, we are able to determine all the solutions g: S—~K (with
(K, +, ») — an arbitrary field) of equation (1) which satisfy the condition
g 1({0}))cZ,. For, we shall show that Z, satisfies condition (C). In fact, take
s=(n,y), s;=n;, y)eS and 1,=(m;, x;)€S, i=1, ..., k). We have to find a pair

(m, x) =t€S+s = {(p+n, 2"z+y)ES: (p, 2)€ S}
(*) Obviously, every commutative semigroup is left reversible. Therefore, every commutative:

semigroup (S, +) is embeddable into a group (G, +) (with G=5—S) if and only if it is cancellative .
(**) It is not right reversible (compare [4], Exercise 1 for § 12.4).
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such that

(13) (m;+m, 2"x;+x) = ; +16 Zy+s; = {(p+n;, 2"z+y)ES: z = p}

and

(14)  (n,y) =si4Zy+t;+t = {(p+m+m, 2™+ "z 42" x; 4+ x)€ S: z = p}

for i=1, ..., k. In order to have r=(m, x)¢ S+s5, take m=n and x=2"z,+y with
z,.£2N(unrestricted temporarily). To realize (13) and (14) (with m=n) fori=1, ..., k,
denote by P the set of all peN such that p is a solution of at least one of

the equations
mi+n=p+n, n=p+m+n, i=1,..,k,

and put p,:=max P. Obviously, for all p=p,, pEN, and all z€ 2N we have

(13) (mi+n, 2"x;+x) # (p+n;, 2"z+y;)
and
(14) (i, ) # (p+m+n, 2" "z 42" x4 X)

for i=1, ..., k (independently of the choice of x). If one has p=p, and (p, 2)€Z,
then necessarily z=p, whence, in order to get (13°) and (14°) for i=1, ..., k, it
suffices to take x large enough (which may be done by making z, large enough).

Consequently, Z, satisfies condition (C) (and, obviously, so does an arbitrary
subset of Z,). According to Theorem 3, a function g:S--K fulfilling (1) and the
condition Z:=g~'({0})cZ, is of the form

0 for x€Z
gx)=q7 1
m for xeS\Z

where F is an arbitrary homomorphism of § into K. Now, we have to find a re-
presentation of such homomorphisms, i.e. to solve the functional equation

(15) F(m+n,2"x+y) = F(m, x)+ F(n,y), (m,x), (n,y)€S.

Putting ¢ (m):=F(m,0), meN, y(»):=F(0,y), y€2N, and setting n=x=0 in (15)
we get
F(m,y) = @(m)+y(y), (m,y)ecS.

Setting x=y=0 and, subsequently, m=n=0 in (15) we obtain the relations

o(m+n) = @(m)+e@(n), (m,n)cN3

Y(x+y) =y x)+y(), (x, ¥)E2N)?,
which imply easily

@e(m)=ma, meN, Y(y) =yp, veE2N,
where «, f are certain constants from K. Thus F(m, y)=mx+yf, (m, y)< S, which
inserted to (15) gives f=0. Therefore
0 for (mx)eZ

g(m,x) =1 1 :
one for (m, x)e S\ Z.
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