Note on maximal asymptotic nonbases of zero density

By S. TURJÁNYI (Debrecen)

M. B. NATHANSON introduced in [2] the notion of maximal asymptotic non-basis as the dual of the notion of minimal asymptotic basis. We call a strictly increasing sequence of nonnegative integers a maximal asymptotic nonbasis of order h, if it possesses the following two properties;

(i) A is not an asymptotic basis of order h,

(ii) if b is any nonnegative integer and $b \notin A$, then $A \cup b$ is an asymptotic basis of order h.

In the above mentioned paper Nathanson showed that under certain conditions the union of suitable residue classes satisfies (i) and (ii) and yields therefore a maximal asymptotic nonbasis of positive density. In [2] Nathanson posed the question of the existence of a maximal asymptotic nonbasis of order $h \ge 2$, for which $\lim_{x} \frac{A(x)}{x} = 0$ (as usual, A(x) denotes the number of the elements of the sequence A which are not greater than x).*)

In our paper [4] we gave an affirmative answer to this open question by Nathanson in the case h=2. In the present paper we continue these investigations and we show that there exist such maximal second order nonbasis A of zero density, for which $A(x)=O(\sqrt{x})$ and this estimate is already best possible. Furthermore we show that from any second order basis $A=\{a_1,a_2,...\}$ satisfying $\sup_{i=1,2,...} (a_{i+1}-a_i)=\infty$ a maximal second order asymptotic nonbasis A^* can be $a_i=1,2,...$ constructed for which $a_i^*(x) \le 12A(x)$ holds. As is known, in*) [1] and [3] one can find examples for second order basis with the property $a_i^*(x)=O(\sqrt{x})$.

Definition. The sequence A^* is called a transformed of the sequence A_0 with respect to the sequences $\{m_i\}$, $\{M_i\}$, $\{b_i\}$, if $x \le m_k$ and $x \in A_k$ imply $x \notin A^*$ and conversely (k=1, 2, ...), where

and
$$A_{k} = A_{k-1}^{I} \cup A_{k-1}^{II} \cup A_{k-1}^{IV} \quad (k = 1, 2, ...),$$

$$A_{k-1}^{I} = \{x | x \le m_{k} \text{ and } x \in A_{k-1}\},$$

$$A_{k-1}^{II} = \{x | x = M_{k} - y, \ 0 \le y \le b_{k} \text{ and } y \notin A_{k-1}\},$$

$$A_{k-1}^{III} = \{x | x = M_{k} + a_{i} + 1, \ a_{i} \in A_{k-1}\},$$

$$A_{k-1}^{IV} = \{2M_{k} + 1, \ M_{k} + M_{k-1} + 1, \ M_{k} + M_{k-2} + 1, \ ..., \ M_{k} + M_{1} + 1\}.$$

^{*)} Added in proof: Recently M. B. NATHANSON (J. London Math. Soc. (2) 15, 1977, 29—34) has proved the existence of a maximal second order asymptotic nonbasis with A $(x) = O(\sqrt{x})$

The sequences A_0 and A^* are interesting for us, in general, if their elements are nonnegative integers. This is why we assume that the sets A_{k-1}^{I} , A_{k-1}^{III} , A_{k-1}^{III} , A_{k-1}^{III} , A_{k-1}^{III} , A_{k-1}^{III} , A_{k-1}^{III} do not possess negative elements. If for instance on grounds of the choice of the sequence $\{M_i\}$ the set A_{k-1}^{IV} had a negative number as element, then we consider the set A_{k-1}^{IV} empty.

Note that with the choice $\{m_i \equiv 1\}$, $\{M_i \equiv -1\}$ and $\{b_i \equiv 0\}$ the transformed of an arbitrary sequence A_0 (which consists of nonnegative elements) consides with A_0 . By definition the set A_0^{II} is then empty, and it follows that $A_0^{\text{I}} \subset A_0$ and $A_0^{\text{III}} \equiv A$; then by our assumption A_0^{IV} is likewise to be considered empty. This means that a suitable transformed of a maximal asimptotic nonbasis of second order is very same.

In the sequel we consider the question, when a transformed of a second order basis is a second order maximal nonbasis. Our purpose is to find a sufficient condition.

The transformed of a second order basis A_0 can be a second order maximal nonbasis, if to an arbitrary positive integer b there exists an $a_i \in A_0$ such that for the representation of numbers of $(a_i, a_i + b)$ (as the sum of two elements of A_0) a number of $(a_i, a_i + b)$ is not necessary. If this latter condition is not fulfilled, then $(a_{i+1} - a_i)$ must be smaller than b, than is

$$\max_{i} (a_{i+1} - a_i) \le b, \quad a_{i+1}, a_i \in A_0.$$

The sequence $\{0, 1, 2, 3, 6, ..., 3k, ...\}$ is for b=7 an example for the above mentioned property. From the inequality $\max_i (a_{i+1}-a_i) \leq b$, $a_i, a_{i+1} \in A_0$ it does not yet follow that there exists to the sequence A_0 a number b such that there is no a_i for which a number from $(a_i, a_i + b)$ is necessary in order to represent the elements of $(a_i, a_i + b)$. An example for such a sequence is given if the numbers $\{2^2, 2^3, ..., 2^k, ...\}$ are omitted from the nonnegative integers.

A series A_0 can evidently possess many transformed, and a transformed may belong to more than one sequence.

Denote by A(x) the number of those elements of the sequence A which are not greater than x.

Theorem. If a second order basis A_0 satisfies the condition $\sup_{i=1,2,...} (a_{i+1}-a_i) = \infty$, then it has a transformed A^* such that A^* is a second order maximal asymptotic nonbasis and $A^*(x) \le 12A_0(x)$.

PROOF. Our main point in the proof is a good choice of the sequences

$$\{m_1, \ldots, m_k, \ldots\}, \{M_1, \ldots, M_k, \ldots\}$$
 and $\{b_1, \ldots, b_k, \ldots\},$

If we succeed in properly defining these sequences, then it will be easier to show the indicated property of A^* . This is why more place is devoted to the construction of the sequences $\{m\}$, $\{M\}$ and $\{b\}$ than to the investigation of the corresponding properties of the sequence A^* .

Let $2 \le b_1$ be an integer.

Denote by $_1a_i$ the smallest element of A_0 for which the following two conditions are satisfied:

$$(1) a_i + b_1 < a_{i+1}$$

and

(2)
$$b_1 < \frac{1}{3} \log A_0(a_i)$$

where a_{i+1} is that element of the sequence A_0 which follows a_i , and we choose $m_1 = a_i$ for m_1 . Because of the condition sup $(a_{i+1} - a_i) = \infty$ it is evident that

such $a_i = a_i$ exist. We define M_1 as the smallest integer to the representation of which as a sum of two elements of A_0 one needs an element of A_0 that is greater than a_i .

Then

$$M_1 > {}_1a_i + b_1$$

for a_i has been chosen in such a way that A does not contain elements in the interval $(a_i, a_i + b)$. Starting with A_0 we show that by definition one gets a sequence A, for which

(3) $A_1(x) = A_0(x) + O(M_1)$ for any sufficiently large x,

(4) $A_1(x) \leq 3A_0(x)$ for every x,

(5) $M_1 \notin 2A_1$ but if $x \neq M_1$ and $x \ge 0$ integer, then $x \in 2A_1$,

(6) if $x \in A_1$ and $0 \le x \le b_1$, then $M_1 \in 2\{A_1 \cup \{x\}\}$. To shows (3) and (4) it will be sufficient to investigate $A_1(x)$ on three intervals. If $0 \le x \le M_1 - b_1$, then $A_1(x) \le A_0(x)$ because in case $x \le m_1$, $A_1(x) = A(x)$ and we ommitted according to the definition the elements of A_0 which are between m_1 and $M_1 - b_1$; for A_0^{II} has elements smaller than m_1 and A_0^{II} , A_0^{III} , A_0^{IV} have elements greater than M_1-b_1 . If $M_1-b_1 \le x \le M_1$, then let

$$A_1(x) = A_1(M_1 - b_1) + r(x),$$

where $A_1(M_1-b_1) \le A_0(M_1-b_1) \le A_0(x)$ and $r(x)=b_1$, since we can take at most b_1 elements to A_0 from the interval (M_1-b_1, M_1) .

The relation $r(x) \leq b_1 < \frac{1}{3} \log A_0(a_i) < \frac{1}{3} \log A_0(M_1)$ follows from condition

(2) and from the fact that M_1 is evidently greater than a_i .

If $M_1 < x$, then

$$A_1(x) \le A_1(M_1 - b_1) + r(M_1) + A_0(x - (M_1 + 1)) + 1$$

since the number of elements of A_0^{II} and A_0^{II} is exactly $A_1(M_1-b_1)+r(M_1)$, on the other hand, the elements which are greater than M_1 belong to $A_0^{\rm III}$ and of these the number of the elements not greater than x is equal to

$$A_0(x-M_1-1).$$

The inequality

$$A_1(M_1-b_1)+r(M_1)+A_0(x-M_1-1)+1 \le$$

$$\leq A_0(M_1) + \frac{1}{3} \log A_0(M_1) + A_0(x) + 1$$

holds because of the inequalities $r(M_1) \le b_1 < \frac{1}{3} \log A_0(M_1)$, $A_1(M_1 - b_1) = A_0(M_1)$

and $A_0(x-M_1-1) \le A_0(x)$. Therefore we can write

(7)
$$A_1(x) = A_0(x) + O(M_1)$$

and

(8)
$$A_1(x) \leq 3A_0(x)$$
.

In order to prove (5) we consider the following. $2A_1$ contains the numbers smaller than M_1 . If $M_1+1 \le x \le 2M_1+1$, then x can be represented in the form $x=a_j+M_1+a_i+1$, where a_j , $M_1+a_i+1 \in A_1$, and $x=2M_1+1$ is represented in the form $x=2M_1+1+0$ with 0, $2M_1+1 \in A_1$. If $x \ge 2M_1+2$, then x can be represented as $x=M_1+a_r+1+M_1+a_s+1$, where M_1+a_r+1 , $M_1+a_s+1 \in A_1$. Thus (5) is verified. One obtains (6) immediately because of the definition of transforming; $x < b_1$ and $x \notin A_1$, $x \ge 0$ yield $x \notin A_0$ and then $M_1-x \in A_0^{\text{II}}$, that is, $M_1-x \in A_1$ and thus $M_1-x+x=M_1 \in 2\{A_1 \cup \{x\}\}$. For A_1 the condition $\sup_{i=1,2,...} (a_{i+1}-a_i) = \infty$ is

satisfied, since A_1 has been obtained from A_0 by changing finitely many elements and adding to every element a fixed number.

Let now $k \ge 2$ be an arbitrary natural number, $b_k = b_{k-1} + 1$ and let $c_1, c_2, c_3, ...$ be real numbers greater than 1 for which

$$\prod_{i=1}^{\infty} c_i = 4$$

holds. Assume that A_1, \ldots, A_{k-1} have already been constructed with the desired properties corresponding to (3)—(6) and to the conditions of the theorem.

We choose an $_ka_i$ from A_{k-1} in such a way that the following properties are satisfied:

if
$$x \ge {}_k a_i$$
, then $\frac{A_{k-1}(x)}{A_{k-2}(x)} < c_{k-1}$,

$$_{k}a_{i}+b_{k} < _{k}a_{i+1}, \quad b_{k} < \frac{1}{3}\log(A_{k-1}(_{k}a_{i})),$$

and

$$m_k = {}_k a_i$$
.

Let $b_k = b_{k-1} + 1$ and let M_k be the smallest natural number which cannot be represented as the sum of two elements of A_{k-1} not exceeding $k a_i$. From A_{k-1} we obtain A_k according to the definition, with the given values m_k , M_k , b_k . It remains yet to show that A_k has the following properties:

(9)
$$A_k(x) = A_{k-1}(x) + O(M_k)$$

for any sufficiently large x;

(10)
$$A_k(x) \leq 3A_{k-1}(x)$$
 for every x ;

(11)
$$M_1, M_2, ..., M_k \in 2A_k$$
, but if $x \neq M_i$ $(i=1, ..., k)$

and $x \ge 0$ integer, then $x \in 2A_k$;

(12) if
$$x \in A_k$$
 and $0 \le x < b_k$, then $M_k \in 2\{A_k \cup \{x\}\}$.

The proof of (9), (10) is the same as that of (3), (4); we only have to take into consideration the changes

$$A_0 \rightarrow A_{k-1}$$
, $A_1 \rightarrow A_k$, $b_1 \rightarrow b_k$, $M_1 \rightarrow M_k$.

Note that in case $M_k < x$,

$$A_k(x) \leq A_{k-1}(M_k) + b_k + k + A_{k-1}(x - M_k - 1),$$

but $k < b_k$, and thus again the inequality

$$A_k(x) \leq 3A_{k-1}(x)$$

holds for every x.

For the proof of (11) we note that $M_1, M_2, ..., M_k \notin 2A_k$ because M_i (i=1, 2, ..., k) can be represented at most by a sum of elements of A_{i-1}^{I} and A_{i-1}^{II} ; this, however, is not possible by definition of A_{i-1}^{I} and A_{i-1}^{II} .

Now we prove (11), that is, we show that $x \neq M_i$ $(i=1,\ldots,k)$ implies $x \in 2A_k$. If $x < M_k$, then we are done because x is contained in $\{A_{k-1}^1 + A_{k-1}^1\} \subset 2A_k$. If x is in the interval $[M_k+1,2(M_k+1)]$ then $x-M_k-1=D \neq M_i$ $(i=1,\ldots,k)$ implies $D=a_r+a_s$, $a_r+a_s \in 2A_{k-1}^1$, that is, because of $x=a_r+a_s+M_k+1$ and $a_r \in A_{k-1}^1$, $a_s+M_k+1 \in A_{k-1}^{III}$ we obtain $x \in A_{k-1}^1 + A_{k-1}^{III}$ and thus $x \in 2A_k$. If $x = M_k+1+M_i$ $(i=1,2,\ldots,k)$, then $0 \in A_{k-1}^1$ and $M_k+1+M_i \in A_k$ imply $x \in 2A_k$. If $x \ge 2M_k+2$ and $x-(2M_k+2)=M \ne M_i$, then $M=a_i+a_j$, where $a_i,a_j \in A_{k-1}$ and thus a_i+M_k+1 , $a_j+M_k+1 \in A_{k-1}^{III}$ that is, $x \in 2A_k$. If however $M=M_i$ then we take into consideration that M_i+M_k+1 and M_k+1 belong to A_k and obtain $x \in 2A_k$. To show (12) it is sufficient to note that $M_k-x \in A_{k-1}^{II}$ because of the conditions $x \notin A_{k-1}$ and $0 \le x < b$. In this case $x+(M_k-x)$ is indeed an element of $A_k+\{x\}$. For A_k the condition $\sup_{a_i \in A_k} (a_{i+1}-a_i) = \infty$ is satisfied, since it has been constructed from A_{k-1} by changing a finite number of elements or by shifting of A_{k-1} with a fixed number.

By the previous recursive definition of the sequences $\{m\}$, $\{M\}$ and $\{b\}$ we constructed step by step the sequence A^* , too. For, if we transform with (m_i, M_i, b_i) then those elements of the sequence which are smaller than m_i remain unchanged. Properties (5) and (11) show that $\{M\} \cap 2A^* = \emptyset$ and that $x \notin \{M\}$ implies $x \in 2A^*$. From (6) and (12) it follows that for an arbitrary x > 0 and $x \notin A^*$ there exists a k such that $x < b_k$. Then i > k - 1 implies $M_i - x \in A_{i-1}^n$, and thus $\in A^*$. This means that A^* is in fact a second order maximal asymptotic nonbasis.

We have yet to show that $\frac{A^*(x)}{A_0(x)} \le 12$. Let x be an arbitrary positive real number. Then for some k one has $m_{k-1} < x < m_k - b_k$, that is,

$$A^*(x) = A_k(x) = A_{k-1}(x)$$
 and $\frac{A_{k-1}(x)}{A_{k-2}(x)} < 3$.

Thus $A_{k-1}(x) < 3A_{k-2}(x)$. On the other hand, $3A_{k-2}(x) < 3c_{k-2}A_{k-3}(x)$ since $a_{k-1}a_{k-1}$ has been chosen in such a way that $a_{k-1}a_{k-1}$ implies

$$\frac{A_{k-2}(x)}{A_{k-3}(x)} < c_{k-2}.$$

The inequality $x \ge_{k-1} a_i$ holds on account of $x > m_{k-1}$. Using

$$x \geq a_{i-1}a_i \geq a_{i-2}a_i \geq \ldots \geq a_i$$

it follows that

$$3A_{k-2}(x) < 3c_{k-2}A_{k-3}(x) < 3c_{k-2}c_{k-3}A_{k-4}(x) < \dots < 3c_{k-2}\dots c_1A_0(x),$$

that is, $A^*(x) < 3c_{k-2}...c_1A_0(x)$. From this we obtain by the choice of $c_1, c_2, ...$ the relation $c_{k-2}...c_1 < 4$ and therefore

$$A^*(x) < 12A_0(x)$$
.

Remark. The constant 12 occurring in the theorem can be improved to $2+\varepsilon$, where $\varepsilon > 0$ is an arbitrarily small constant.

First we show that in (10) we can write $2+\varepsilon_1$ instead of 3, where $\varepsilon_1>0$ is an arbitrarily small number. $A_k(x) \le A_{k-1}(M_k) + b_k + A_{k-1}(x - M_{k-1}) + k$ holds for every $x > M_k$, but because of $A_{k-1}(x - M_{k-1}) \le A_{k-1}(x)$ and $b_k > k$ one has $A_k(x) = A_{k-1}(M_k) + A_{k-1}(x) + 2b_k$. The M_k and the b_k must be chosen in such a way that $\varepsilon_1 A_{k-1}(M_k) > 2b_k$ which can be done without difficulty. Taking into consideration that $A_k(x) - A_{k-1}(x) \le constant$ for $x > M_k$, we get

$$A_k(x) \leq (2+\varepsilon_1) A_{k-1}(x)$$

for any x.

If in (*) the constants c_i are chosen in such a way that $\prod_{i=1}^{\infty} c_i = 1 + \varepsilon_2$ and $c_i > 1$ for every i, then we obtain

$$A^*(x) < (2+\varepsilon_1)(1+\varepsilon_2)A(x)$$

instead of $A^*(x) \leq 12A_0(x)$. If ε_1 and ε_2 are sufficiently small positive numbers, then

$$A^*(x) < (2+\varepsilon)A(x).$$

It is not difficult to provide an example for a sequence c_1, c_2, \ldots satisfying the conditions $\prod_{i=1}^{\infty} c_i = 1 + \varepsilon_2$ and $c_i > 1$ for $i = 1, 2, \ldots$ with arbitrary $\varepsilon_2 > 0$. Choose for instance $\alpha > 1$ such that $\alpha^{\beta} = 1 + \varepsilon_2$ and let β be an irrational number. Such numbers α and β evidently exist. Write β as a decimal fraction, that is, $\beta = \sum_{i=1}^{\infty} \gamma_i \cdot 10^i$. Let then $c_k = \alpha^{\gamma i_k} 10^{i_k}$ where γ_{i_k} is the k-th figure of β differing from 0. Then obviously $\prod_{k=1}^{\infty} c_k = 1 + \varepsilon_2$.

Corollary 1. There exists a second order maximal asymptotic nonbasis A^* such that for any positive x the condition $c_1\sqrt{x} \le A^*(x) \le c_2\sqrt{x}$ is satisfied with suitable positive constants c_1, c_2 .

PROOF. In [1] and [3] is proved that there exists a second order basis A_0 such that $A_0(x) \le c\sqrt{x}$ with a suitable constant c. If we apply our theorem to such a sequence A_0 (this can be done since A_0 has the density 0, that is, the condition

 $\sup_{i=1,2,...} (a_{i+1}-a_i) = \infty$ is obviously satisfied for A_0), then A_0 has a transformed A^* having the property that $A^*(x) \le 12A_0(x) \le c_2\sqrt{x}$. Furthermore there exists a natural number which can be taken to A^* in order to obtain a second order basis. Thus according to [3] there are at least $c_1\sqrt{x}$ elements of $A^*(x)$ not exceeding x where c_1 denotes a suitable positive constant.

Corollary 2. If A_0 is a second order basis of zero density, then there exists a transformed A^* of A which is also of zero density.

PROOF. It suffices to show that the condition $\sup_{i=1,2,...} (a_{i+1}-a_i) = \infty$ is satisfied for sequences of zero density. Then according to our theorem the sequence A_0 has a transformed A^* for which $A^*(x) \le 12A_0(x)$ and A^* is a second order maximal asymptotic nonbasis. Furthermore then

$$\lim_{x \to \infty} \frac{A^*(x)}{x} \le \lim_{x \to \infty} \frac{12A_0(x)}{x} = 12 \lim_{x \to \infty} \frac{A_0(x)}{x} = 0,$$

that is, A^* is in fact a sequence of zero density. The condition $\sup_{i=1,2,...} (a_{i+1}-a_i) = \infty$ is satisfied for sequences of zero density because of the following lemma (which asserts more than we shall here need).

Lemma. (cf. [4]). If the sequence A satisfies the condition $\lim_{x\to\infty}\frac{A(x)}{x}=0$, then for an arbitrarily small $\varepsilon>0$ and for an arbitrarily great number M there exist $a_i\in A$ such that the following conditions hold:

$$\frac{A(a_i)}{a_i} < \varepsilon,$$

$$(14) a_i - a_{i-1} > M,$$

(15) if
$$i > j$$
, then $a_i - a_{i-1} > a_j - a_{j-1}$.

PROOF. This is Lemma 1. in [4].

In general, it is not true that to an A_0 satisfying the assumption of the theorem there exists an constant c_3 such that for any x and for any A^* the relation $A_0(x) \le \le c_3 A^*(x)$ holds. If we take a second order basis B such $B(x) = O(\sqrt{x})$, than from this one can derive a sequence which may serve as a counterexample. Consider for instance a sequence $M = \{M_1, M_2, ...\}$ for which $M_i \ge M_{i-1}^{M_{i-1}}$ (i = 2, 3, ...). Let $B' = H \cup B$ where $H = \bigcup_{i=1}^{\infty} \{M_i, M_i^2\}$ and where $\{M_i, M_i^2\}$ denotes the set of those integers Y for which $M_i < Y < M_i^2$. Let us now investigate the quotient $\frac{B_1'(x)}{B'(x)}$. Then for $x = M_1$ we approximately obtain $\frac{1}{\sqrt{M_1}}$, whereas for $x = M_1^2$ the quotient is approximately 1. Thus a good estimation is not possible.

I thank Dr. K. Győry for his help during the writing of this paper.

References

- [1] J. W. S. Cassels, Über Basen der natürlichen Zahlenreihe, Abh. Math. Univ. Hamburg, 21 (1957), 247-257.
- [2] M. B. Nathanson, Minimal Bases and Maximal Nonbases in Additive Number Theory, J. Number Theory, 6 (1974), 324—333.
- [3] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, J. Reine
- Angew. Math., 194 (1955), 40—65.

 [4] S. Turjányi, On maximal asymptotic nonbases of zero density, J. Number Theory, 9 (1977), 271—275.

(Received July 16, 1976.)