Note on maximal asymptotic nonbases of zero density

By S. TURJANYI (Debrecen)

M. B. NATHANSON introduced in [2] the notion of maximal asymptotic non-
basis as the dual of the notion of minimal asymptotic basis. We call a strictly in-
creasing sequence of nonnegative integers a maximal asymptotic nonbasis of order
h, if it possesses the following two properties;

(i) A is not an asymptotic basis of order /,

(i1) if b is any nonnegative integer and b¢ A, then AUb is an asymptotic basis
of order A.

In the above mentioned paper Nathanson showed that under certain con-
ditions the union of suitable residue classes satisfies (i) and (ii) and yields therefore
a maximal asymptotic nonbasis of positive density. In [2] Nathanson posed the
question of the existence of a maximal asymptotic nonbasis of order /4 =2, for which

lim nf 4 x]=0 (as usual, 4(x) denotes the number of the elements of the sequence

P
A whlch are not greater than x).*)

In our paper [4] we gave an affirmative answer to this open question by
Nathanson in the case i=2. In the present paper we continue these investigations
and we show that there exist such maximal second order nonbasis 4 of zero density,
for which 4(x)=0()x) and this estimate is already best possible. Furthermore
we show that from any second order basis A={a,,a,, ...} satisfying

sup (a;.,—a;) = a maximal second order asymptotic nonbasis 4" can be

i=1,2,...
constructed for which 4*(x)=124(x) holds. As is known, in*) [1] and [3] one can

find examples for second order basis with the property A(x)=0(}x).

Definition. The sequence A* is called a transformed of the sequence A4, with
respect to the sequences {m}, (M.}, {b;}, if x=m, and x€A4, imply x¢ 4™ and
conversely (k=1, 2, ...), where

A,‘=A*_1UA L UAR UAY, (k=1,2,..),
Ap_y = {x|x = m; and x€A4,_,},
Al = {xlx = My—y,0=y = b, and y§4,_,},
ALy = {x|x = My ta;+1, a,;€ Ay 1},

Ay = M+ 1, M+ My + 1, M+ My o+ 1, .., M+ M, + 1}

and

*) Added in proof: Recently M. B. NATHANSON (J. London Math. Soc. (2) 15, 1977, 29—34)
has proved the existence of a maximal second order asymptotic nonbasis with A (x)=0(}x)
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The sequences A, and A" are interesting for us, in general, if their elements
are nonnegative integers. This is why we assume that the sets A} _,, A)_,, A AV,
do not possess negative elements. If for instance on grounds of the choice of the
sequence {M;} the set 4}Y, had a negative number as element, then we consider
the set 4}, empty.

Note that with the choice {m;=1}, {M;,=—1} and {b;=0} the transformed
of an arbitrary sequence A4, (which consists of nonnegative elements) consides
with 4,. By definition the set Ay is then empty, and it follows that A< A4, and
A'=A; then by our assumption A}Y is likewise to be considered empty. This
means that a suitable transformed of a maximal asimptotic nonbasis of second
order is very same.

In the sequel we consider the question, when a transformed of a second order
basis is a second order maximal nonbasis. Our purpose is to find a sufficient
condition.

The transformed of a second order basis 4, can be a second order maximal
nonbasis, if to an arbitrary positive integer b there exists an ;€ A4, such that for
the representation of numbers of (a;, @;+b) (as the sum of two elements of A4,)
a number of (a;, a;+ b) is not necessary. If this latter condition is not fulfilled, then
(a;,,—a;) must be smaller than b, than is

m?x(ai“—a,-) =b, a;,1,a,€A,.

The sequence {0,1,2,3,6, ..., 3k, ...} is for b=7 an example for the above
mentioned property. From the inequality m?x(ahlwa,n)éb, a;, a;,1€A, it does

not yet follow that there exists to the sequence 4, a number b such that there is
no a; for which a number from (a;, a;+b) is necessary in order to represent the
elements of (a;, a;+b). An example for such a sequence is given if the numbers
{22, 23, ..., 2% ...} are omitted from the nonnegative integers.

A series A, can evidently possess many transformed, and a transformed may
belong to more than one sequence.

Denote by A(x) the number of those elements of the sequence 4 which are
not greater than x.

Theorem. If a second order basis A, satisfies the condition  sup (a;,,—a;) = =,
i=1,2,...
then it has a transformed A™ such that A" is a second order maximal asymptotic

nonbasis and A*(x)=12A4,(x).
ProOOF. Our main point in the proof is a good choice of the sequences
s e G ey TG s B on ) am T s s B vy

If we succeed in properly defining these sequences, then it will be easier to show
the indicated property of A*. This is why more place is devoted to the construc-
tion of the sequences {m}, {M } and {b} than to the investigation of the corresponding
properties of the sequence A4*.

Let 2=5, be an integer.
Denote by ,a; the smallest element of 4, for which the following two conditions
are satisfied:

(1) 14+ by < 1854,
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1
(2) b, = 3 log A,(,a))

where ,a4;., is that element of the sequence A, which follows ;a;, and we choose

m,=,a; for m;. Because of the condition sup (a;,,—a;) == it is evident that
i=12,...

such @;=,a; exist. We define M, as the smallest integer to the representation of
which as a sum of two elements of 4, one needs an element of A4, that is greater
than 14 .
Then

M, = ,a;+b,

for ,a; has been chosen in such a way that 4 does not contain elements in the in-
terval (ya;, ,a;+b). Starting with 4, we show that by definition one gets a sequence
A, for which

(3) A, (x)=A,(x)+O(M,) for any sufficiently large x,

(4) A,(x)=3A4,(x) for every x,

(5) M,§24, but if x=M,; and x=0 integer, then x€24,,

(6) if x¢ A, and 0=x=b,, then M,c2{4,U {x}}.

To shows (3) and (4) it will be sufficient to investigate 4,(x) on three intervals.

If 0=x=M,-b,, then A,(x)=A,(x) because in case x=m,, A,(x)=A(x)
and we ommitted according to the definition the elements of 4, which are between
m, and M,—b,: for A} has elements smaller than m, and A, A}, A}V have elements
greater than M,—b,. If M,—b,=x=M,, then let

Ay (x) = A, (M, — b))+ r(x),

where A,(M,—b,)=A,(M,—b,)=A,(x) and r(x)=b,, since we can take at most
b, elements to A4, from the interval (M,—b,, M,).
The relation r(x)'é-bﬁ:%!og A.,(la,»)«zélogAu(M,) follows from condition

(2) and from the fact that M, is evidently greater than ,a;.
If M;<=x, then

Ay (x) = A} (My—b) +r(M,)+ Ag(x—(M;+1))+1

since the number of elements of A} and A} is exactly A,(M,—b,)+r(M,), on the
other hand, the elements which are greater than M, belong to A' and of these
the number of the elements not greater than x is equal to
Ao(x—' Ml = l}.
The inequality
Ay (My— b)) +r(My)+Ay(x—M,— 1) +1 =

1
= Ao(My) +3 log 4o(My) + 44(x) +1

holds because of the inequalities r(M,):—-:b,c%long(Ml), Ay (M, —by)=A,(M,)
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and A,(x—M,—1)=A4,(x). Therefore we can write

(7) Ay (x) = Ay(x)+0(M,)
and
(8) A,(x) = 3A4,(x).

In order to prove (5) we consider the following. 24, contains the numbers
smaller than M,. If M, +1=x=2M,+ 1, then x can be represented in the form
x=a;+M,+a;+1, where a;, M\+a;+1€A4,, and x=2M,+1 is represented in
the form x=2M,+ 1 +0 with 0, 2M,+ 1€ 4,. If x=2M,+ 2, then x can be represented
as x=M,+a,+1+M,+a,+1, where M,+a,+1, M,+a,+15A4,. Thus (5) is
verified. One obtains (6) immediately because of the definition of transforming;
x=<b, and x¢A4,, x=0 yield x¢ 4, and then M,—xc A}, that is, M,—x€4, and
thus M,—x+x=M,c2{4,U{x}}. For 4, the condition sup (a.,—a)=ce is

iml.2 ...
satisfied, since A4, has been obtained from A4, by changing finitely many elements
and adding to every element a fixed number.
Let now k=2 be an arbitrary natural number, b,=b, _,+ 1 and let ¢, ¢s, ¢y, ...
be real numbers greater than 1 for which

(%) Me=4
i=1
holds. Assume that A4,, ..., 4,_, have already been constructed with the desired
properties corresponding to (3)—(6) and to the conditions of the theorem.
We choose an ,a; from A4, _, in such a way that the following properties are
satisfied:
Ay (x)

if x=,q;, then ———— <
| “aad | Ak—e(x) = Ck-1»

1
ka"+bk = kdi+1s b.'r. = _3' log (Ak—l(kai))'

and
,”ft — kai .

Let by=b, _,+1 and let M; be the smallest natural number which cannot be re-
presented as the sum of two elements of 4,_, not exceeding ,a;. From A,_, we
obtain A, according to the definition, with the given values m,, M., b,. It remains
yet to show that A4, has the following properties:

9) Ai(x) = 4,1 (x) +O(M,)

for any sufficiently large x;

(10) A (x) = 34, _,(x) for every x;

(11) M, M,, .., M;§24,, but if x=M, (i=1, ..., k)

and x=0 integer, then x€2A4,;

(12) if x¢4, and 0=x<b, then M,c2{4,U{x}}.
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The proof of (9), (10) is the same as that of (3), (4); we only have to take into con-
sideration the changes

Ay =~ Ay—y, Ay~ Ay, by—+b,, M~ M,.
Note that in case M, <x,

A(x) = Aoy (M) + b+ k+ Ay (x— M — 1),
but k<b,, and thus again the inequality

Ay (x) = 34, -,(%)
holds for every x.

For the proof of (11) we note that M, , M,, ..., M, 424, because M,
(i=1,2, ..., k) can be represented at most by a sum of elements of A}_, and A" ;
this, however, is not possible by definition of 4!_, and A!',.

Now we prove (11). that is, we show that x=M, (i=1, ..., k) implies x€2A,.

If x<=M,, then we are done because x is contained in {A;_,+ A} _;}C2A4,.
If x is in the interval [M, +1, 2(M,+1)] then x— M, —1=D= M, (i=1, ..., k) implies
D=a,+a,, a,+a+<2A4}_,, that is, because of x=a,+a,+M,+1 and a,cA}_,,
a,+M,+ 1AM, we obtain x€AL_,+ A", and thus x€24,. If x=M,+1+M,
(i=1,2, ....k), then 06 4} _, and M, + 1+ M €A, imply x€24,. If x=2M,+2 and
x—=(2M,+2)=M#M,;, then M=a;+a;, where a;,a;€A,_, and thus a;+M;+1,
a;+ M+ 1€ AL, that is, x€24,. If however M =M, then we take into considera-
tion that M;+ M,+1 and M +1 belong to 4, and obtain x€24,. To show (12)
it is sufficient to note that M, —x€ A)_, because of the conditions x¢ A, _, and
0=x<b. In this case x+(M,—x) is indeed an element of A4, +{x}. For A, the con-
dition sup (a;,,—a;) = is satisfied, since it has been constructed from A4, ,

acA
by changiné a finite number of elements or by shifting of 4,_, with a fixed number.

By the previous recursive definition of the sequences {m}, {M} and {b} we
constructed step by step the sequence A7, too. For, if we transform with (m;, M;, b;)
then those elements of the sequence which are smaller than m; remain unchanged.
Properties (5) and (11) show that {M}124"=0 and that x4 {M} implies x£24".
From (6) and (12) it follows that for an arbitrary x=0 and x¢ A" there exists a k
such that x<b4,. Then i=k—1 implies M;—xcA;_,, and thus €A4*. This means
that 4" is in fact a second order maximal asymptotic nonbasis.

A*(x . i
We have yet to show that (r):;_-' 12. Let x be an arbitrary positive real number.
0\

Then for some k one has m,_,<x<m,—b,, that is,

A (x)

—_ =3
Ay -2(x) >

A*(x) = Ay(x) = A, _,(x) and

Thus A, _,(x)<=3A4,_s(x). On the other hand, 34, _,(x)=3c,_sA,_4(x) since ,_,a;
has been chosen in such a way that x=,_,a; implies

Ay-2(x) St
T (—k—go
Ay —5(x)
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The inequality x=, ,a; holds on account of x=m,_,. Using

. x'-—'_-fk_]_a,':_?k_za,':é... :é']af.
it follows that

3A4i-2(X) = 3c_a Ag—3(X) = 36,9043 44— 4(X) < ... <= 3¢_3...0; 4y(X),

that is, A" (x)=3¢,_s...¢; Ay(x). From this we obtain by the choice of ¢, ¢, ...
the relation ¢;_,...c;<4 and therefore

A" (x) = 124,(x).

Remark. The constant 12 occurring in the theorem can be improved to 2+e¢,
where £¢=0 is an arbitrarily small constant.

First we show that in (10) we can write 2+¢, instead of 3, where &,=0 is an
arbitrarily small number. 4, (x)=A4, _,(M,)+b,+ A, _;(x—M,_,)+k holds for every
x>M,, but because of A,_,(x—M,_,)=A4,_,(x) and b,=k one has A, (x)=
=A, (M) + A, _,(x)+2b,. The M, and the b, must be chosen in such a way that
& Ay (M,)=2b, which can be done without difficulty. Taking into consideration
that 4,(x)—A,_,(x)=constant for x=>M,, we get

Ay (x) = (2+8) 4,1 (x)
for any x.

If in (#) the constants ¢; are chosen in such a way that ]]r: =1+¢ and
¢;>1 for every i, then we obtain L

A (x) = 2+e)(1 +2y) A(x)
instead of A" (x)=124,(x). If ¢, and &, are sufficiently small positive numbers, then
A*(x) = (2+8) A(x).
It is not difficult to provide an example for a sequence ¢,, ¢., ... satisfyving the con-
ditions ‘ﬁci=l+a«_. and ¢;=1 for i=1,2, ... with arbitrary &,=0. Choose for
instance';i:l such that =1+, and let § be an irrational number. Such numbcfa
« and f evidently exist. Write f as a decimal fraction, that is, = Z 7+ 10°. Let
then c,=a'"*19% where %, is the k-th figure of # differing from 0. Then obviously

H(‘k=l+82.

k=1

Corollary 1. There exists a second order maximal asymptotic nonbasis A* such
that for any positive x the condition ¢,Vx=A*(x)=c.Vx is satisfied with suitable
positive constants c¢,, ¢,.

PRrOOF. In [I] and [3] is proved that there exists a second order basis 4, such

that A,(x)=c}x with a suitable constant ¢. If we apply our theorem to such a
sequence A, (this can be done since 4, has the density 0, that is, the condition
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sup (a;.,—a)=-<= is obviously satisfied for 4,), then 4, has a transformed A4~
i=1,2,...

having the property that A*(x)= 12A0(x)*:c'2|;x Furthermore there exists a natural
number which can be taken to 4* in order to obtain a second order basis. Thus

according to [3] there are at least ¢, Jx elements of A*(x) not exceeding x where
¢, denotes a suitable positive constant.

Corollary 2. If A, is a second order basis of zero density, then there exists a
transformed A™ of A which is also of zero density.

Proor. It suffices to show that the condition sup (a;,,—a;) == is satisfied
i=1,2,...
for sequences of zero density. Then according to our theorem the sequence A,
has a transformed 4™ for which 4*(x)=124,(x) and 4" is a second order maximal
asymptotic nonbasis. Furthermore then

tim 270 i 1246 _ 1510

X-~oe X X =00 X X == oo

Ay(x) =
Y L]

that is, A" is in fact a sequence of zero density. The condition sup (@;41,—a;) ===
i=1,2

is satisfied for sequences of zero density because of the foIlowmg lemma (which
asserts more than we shall here need).

=0, then

Lemma. (cf. [4]). If the sequence A satisfies the condition lim A;.r)

for an arbitrarily small e=0 and for an arbitrarily great number M there exist a; A
such that the following conditions hold:

(13) A
a;
(14) a—a,.,> M,
(15) if i:"‘j, thel‘l a;_al‘_]_:"aj_aj_lo

Proor. This is Lemma 1. in [4].
In general, it is not true that to an A4, satisfying the assumption of the theorem
there exists an constant ¢; such that for any x and for any 4" the relation 44(x)=

=¢, A*(x) holds. If we take a second order basis B such B(x)=0/(}x), than from
this one can derive a sequence which may serve as a counterexample. Consider
for instance a sequence M={M,, M,, ...} for which M;=MMi-1 (i=2,3, ...). Let

=HUB where H= L_J {M;, M}} and where {M;, M?} denotes the set of those

integers Y for which M:{ Y < M}. Let us now investigate the quotient BIE ; Then

——, whereas for x=M; the quotient is

1
approximately 1. Thus a good estimation is not possible.

I thank DRr. K. GYGrY for his help during the writing of this paper.

for x=M, we approximately obtain
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