On a problem of Evelyn—Linfoot and Page in additive
number theory

By CARL POMERANCE (Athens, Georgia) and D. SURYANARAYANA (Waltair)

§ 1. Introduction. Let k=2 be a fixed integer. A positive integer is called k-free-
if it is not divisible by the k-th power of any prime. Let Q, denote the set of k-free
integers. For each positive integer n, let 7,(n) denote the number of pairs (a, b)¢
O, X 0O with n=a+b. In 1931, EVELYN and LINFOOT [5] established the following.
asymptotic formula for sufficiently large » and every ¢=0:

1.1) Ty (n) = cyo(m)n+ E(n),
where
1.2) Ek(") = O(n*’f“‘*““),

a= [ (1-2p7™),

o,(n) = 1 ‘—2)71),
a(n) = JT ( +({*~2)7)
where p runs over all primes. Another proof was given by ESTERMANN [3] in the
same year.
In 1932, PAGE [8] generalized the Evelyn—Linfoot formula as follows: let
k, I be fixed integers with 2=k =/and let T, ,(n) denote the number of pairs (a, b)€
QX Q; with n=a+b. Then for sufficiently large n and every £¢=0:

(1.3) Tk.;(ﬂ) = Ck.fgk.l("J"_f‘Ek.‘(")!
where
(1.4) E, (n) = O(n*+1-9/0-D+5)

Cr,1 = H(I—P_k_Prl),
L) = T +@—p = 1)),
0k 1(n) ,lz( =P Y

It is clear that (1.3) reduces to (1.1) in the case k=1

Denote by Q,(x; a, H) the number of k-free numbers n= x with n=a (mod H).
In 1960, SUBHANKULOV and MUHTAROV [10] gave a new “proof” of (1.1), (1.2)
in the case k=2. Their idea was to use an estimate for Q,(x; a, H). However, there
is a serious error in their work (the estimate in the third line from the bottom of
p. 4 is not valid for large d) which invalidates the lemma of their paper [10]. In
1963, CoHeN and RoBINSON [2] showed how an estimate of Q,(x: a. H) could be
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used to prove (1.3), but without an explicit error term. In 1965, CoHeN [1] using
an estimate for Q,(x; a, H) particularly accurate when x is not much bigger than
H, gave a new proof of (1.1), (1.2) in the case k=2, achieving the slightly better
error estimate

(1.5) E,(n) = O(n*?log®n).

In this paper we give a new proof of the Page formula (1.3), (1.4) using an
estimate of Q,(x:a, H) due to PRACHAR [9] that is also particularly accurate for
small x. Perhaps surprisingly our new proof gives a considerable sharper error

estimate in the case k=/. In fact we improve (1.4) to
0("(h+nﬂ(k+1l+r., if I=k2
9 Exim) = {O(M‘f""'), if 1> k?

for every ¢=>0. Paying more attention to small errors in the case /=k* we can
improve on (1.6) getting

(1.7) Ey (n) = O(n®+P1%+ (log p) (KN4 +D — 1) (I —1)/1).
Note that in the case k=/=2, (1.7) implies E, yon=E,(n)=0(n**log"*'"n) which
is an improvement over (1.5).

We denote by w(n) the number of distinct prime factors of n, t(n) the number
of positive divisiors of n, u the Mdbius function, { the Riemann {-function.

§ 2. Proof of (1.6). We begin with a statement of the result of Prachar [9] re-
ferred to above. We call an integer n k-full, if p*/n for every prime pln.

Theorem 2.1. If (a, H)<Q, and H is k-full, then

2.1 Oux:ia, H) = A"-"'ﬁ' +O (K (xVk {18 | 11k
where
< u(d) 1
2.2 . o PN .
( ) k.H dél, d‘ﬁ i',(k) H(l—p“k)
(d, 1)=1 plH

The implied constant in the O-estimate is absolute.

Remark. Prachar proves (2.1) under the assumption (¢, H)=1, rather than
the assumption (a, H)€Q, and H is k-full. However the proof in either case is
almost identical (cf. §3). Note that if (a, H)§ Q,, then Q,(x:a, H)=0 for all x.

Theorem 2.2. For sufficiently large integers n
O(n(k+£}n(l¢+l}+s), if 1=k
Ev.(n) = {O(n”*). if 1> k2.

ProOF. Let Q; (x; a, H) denote the number of n<x with n€Q,, n=a (mod H).
Then Q; (x; a, H) differs from Q,(x;a, H) by at most 1. Let r=t(n) be arbitrary
with 1=r<n"". From the identity ([2], p. 291)

T, (n) = 2 u(h)Qx (n: n, ),

h=nl'
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we have

Tea) = 2 n()Qu(nsn, )+ 2 p(0)Qu(n; m, H)+0(n'f) =

t<h<n

23
e = T, +T,+0(n'"), say.

Since Q,(n; n, h'Yy<2nh=" for h=n'", we have
(2.9 ITe] = 3 2nh~! = O(ni* ).

t=h
By Theorem 2.1 we have

T,= 2 uh) {Ak,n' ‘:—; +O(K® (n**p =1k h”k))} =Tn+T+Ty, say.
h=t
(n, )€ Q,

Now using (2.2) we have

n 1
Ty = 0 hZ u(h)yh~! {Z(I_P_k)_l =
E! r
(2.5) (n,h)eQ,
= r") ’21' u(hyh=! {Z(l-p“)*‘+0(n »,2: h=") = ¢, 104, (n)n+0(nt*~")
(0, h) € Qy 4

using the infinite series evaluation of [2], p. 292. Also
{O(n”"r‘*'r'“”), if 1=k

Tys = O(nl,.‘k ka(mh—m: — 0("1/:: Zh—uuﬂ) = O(nl,-‘.k)‘ if = k2

h=t h=t

where we use the fact that k“™ =0 (h?) for every £=0 (this can be proved using
theorem 316 of HARDY and WRIGHT [6]). Further more,

Tig = 0( 2 kw(h)hlfk) s O( Z‘ s +:) = 0(,1+Uk +3),
h=t h=t

Hence from (2.3) and our estimates for Ty, Ty, Tys, Ty3. we have

'~V F 15K

— 1-1 L+ljk+e
E.(n)=0nt"""+1t )+{o(nl}k), if 1= k2.

Taking r=n""*+1) establishes our theorem.

§ 3. Prachar’s theorem. In this section we make some small improvements of
Theorem 2.1. to enable us to prove (1.7). Using notation introduced by Cohen,
let (1, v), denote the largest common divisor d of u and v such that (d, v/d)=1.

Let H be a positive integer and let @ be an integer such that (a, H)<Q, and
{(a, H),=1. Note that if H is k-full (and (a, H)¢Q,), then (a, H),=1. Let

@3.1) E(x; a, H) = O,(x: a, H;—Ak_,,%

where A, j is given by (2.2). It follows from [2] that E,(x; a, H)=0(x"*). We prove
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Theorem 3.1. Let a, H be subject to the above conditions and let 1>g=0 be
arbitrary. Then
(3.2) Ey(x: a, H) = O(x'/*s~1¥%) + O (sk®™)

Jor any s, 1=s=H"'"*. The constants implied by the 0-notation depend only on &.

PRrROOF. Let g, be the characteristic function of the set Q,. From the elementary
and well-known fact qk(n)=2'p(d), we have
d<Jn

Oulx;a, H)= 23 q(n)= 3 pd)=

ns_si‘ d"d m=_=.;}
(3.3) n=a(H) m=a(H)
= 2 wd+ 2 p(d)=5+S,, say,
d*m=x d"m=x
d"m=a(H) d*m=a(H)
d=sy d=y

where y=x" s=1* Note that if d*m=a(mod H) has any solutions d, m, then
(d, H)=1 since (a, H)¢Q, and (a, H),=1. From (2.2) we have

=2 2 1= aZ u(d){xd*H'4+0(1)} =

dsy m=xd- =y
d*m=alH) d, H)=1

(3.4) =xH? 3 pld)dt—xH? 3 p(d)d-*+0() =
(d.‘i;-l——l (d.‘:;)il

= A %“{‘O(XH_IJ’“RH’O(J') - Ak,n%+0(x”"s"‘”‘)

since xH 1) ~*=ysH 1<y=xks=1/k
From (3.3) we have

(3.5) (5= = 12’ 1, dm = a(H).

m=<s d=x!km=1/k

For each m, let m"=m/(m, H), H =H/(m, H). If d*m=a (mod H) has any solu-
tions d, then (d, H)=1 and a’=a/(m, H) is an integer with d*m’=a’ (mod H").
The number of solutions of this latter congruence is at most 2k“H" == 2k ysing
Evelyn and Linfoot [4], lemmas 2.41, 2.42, 2.43. Hence from (3.5)

!52| = 22km{m{xl,*km—lrk(Hf)—l_+_0(])} =

m=3

(3.6) ‘ /
= 2k* WD 1k g1 3 (m, HYym~*4-O(sk='®),
Now i
2mHMmM = 3 mimmd)™k= J mi~* 3 mitht=
(307) m=s m;'r::}:.s my|H my=s/my

= 0( 3 #-14) = O(x(H)s'~1").
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Using the fact that k*'#'t(H)sH =k t(H)H *=0(1), we have from (3.6), (3.7)
(3.8) Sy = O(x'*s=1%) 4+ O (skH),
Theorem 3.1 now follows from (3.1), (3.3). (3.4), and (3.8).

Corollary.

0((xktu{HI)l,"“|1-1i)‘ i[' X = HA
(3.9) E(x;a, H) = {

O(X\YH-V&k+32)y  if  x = ¥
where the implied constants in the 0-estimates are absolute.

PROOF. Assume x=H*. Then if s=x/k+D))—olDk/k+]) we have s~ HF/(k+1)

and
Mk g—1k — gpolH) (ka[ﬂ’l)h‘k+l}.

If x>H"* then taking s=H"*+V—oH) we have
skt'}(ﬁ’ - ‘Yl."ls-—l:’. :-Yl;'ﬁH"l.-"lk +1]kt'liﬂ},"ﬂ. — O(‘\.l;'kH—lﬂk +3,".’J).

Remark 1. All of the above is subject to the condition (a, H), =1. In general,
writing H=H, H, with H,=(a, H)_, we have results analogous to the above but
the error terms have an extra factor H, and the constant 4, , also depends on H,.
We state without proof

Theorem 3.2. If (a, H)cQ, and 1=&=0, then
0u(x; @, H) = Ay o, 75+ O(H X574+ O (Hy sko M)

for any s, 1=s=H""* where the implied constants in the O-estimates depend only
on &. We have

(3.10) Ao = I] A=p°»~")/{(K) H(l_P_k)
piH, pH
where p®»| H,.
CoHEN and RoOBINSON [2] have a proof of Theorem 3.2 with error term O(x'/*).

Remark 2. HooLey ([7], Theorem 3) has a sharper result than those of this
section for k=2. However, it does not seem to be useful in further improving the
estimate of any E; ,(n).

§4. The case I=k* 1In this section we establish the estimate (1.7). We shall
make use of part of the proof in §2, in particular (2.3), (2.4), and (2.5). Now

T, =h2' u(h)Qy(n: n, h') =

@D = SuO At 3 aWE@n I+ 3 ) B ) =

h=t nl/kl= <y

= Tll. + Tl’g -+ T;S , Say.
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By the corollary in § 3 we have

T, = O( Z nlﬂ:h—l,f{k+3i2)) =

h<nl/kI
O(n(kf+k+l,f2+3.'2),fk1{k+3}2))’ lf I < k+2
(2) = {O(n”"), if 1= k+2} by

By the same corollary we have

;s A nkeYk+1) — O (p1/k+1) ok log, k1/(k+ 1))
o= 0(Z (nke) (e 5 it

(43) - 0("1;{.&14) Z (t(h))!"ge“""'”“) . 0(”1;“ *‘”I(log ”)(kla’(kfll—l)),
h=t

(¢.3) e 0("1;(k+1) Z(T(h)]""z“-’"””) — 0("11{k+1]r“0g ")(uf:ku)-u),
h=t

where we use a formula of Ramanujan (see WiLsoN [13], eq. (2.39)).
It now follows from (2.3), (2.4), (2.5), (4.1), (4.2), (4.3) that
Ek.,(n) o O(nfl“')+O(u”‘*“""”"“’)-{-O(n”“‘*‘”r(log ")(klft'tvll—lj).
Letting t=n*"*+D(log n)~*** =Dl we have (1.7).

§ 5. The average of E; (n). Let Q,(x) be the number of k-free numbers up to
x and 4,(x)=0,(x)—x/{(k). It is known (WALFISz [12], Satz 1, p. 192) that

(5.1) 4i(x) = 0(-"”}5*(1))

where d,(x)=exp {—Ak~**(log x)**(loglog x)~'/%)}, where A is a positive absolute
constant. If the Riemann hypothesis is true then it is known ([11], corollary 3.2.1)

that
(5.2) 4,(x) = O(x**+V »(x))

where w(x)=exp {4 log x (loglog x)~'}.
Let S, ,(x)= 2 q.(a)g,(b). It follows from (5.1) and partial summation that

at+b=EX
(5.3) Se,1(x) = x220(k) (D +O(x 1% 5, (x)).
If the Riemann hypothesis is true it follows from (5.2) and partial summation that
(54 Sy, 1(x) = x*[20 (k) (D +O(x' *¥*+D g (x)).
However, it is clear that S, ,(x)= 3 T, ,(n), so that from (1.3) we have
(5.5) g E(n) = S (x)— g Ci,1 Qi (n) 1.

We now prove

Lemma.

2 @i (mn = x*2L(K){(D+0(X).
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ProoF. Define a multiplicative function /4 by letting 2(1)=1 and h(p®)=p'—
—p'~*—1 for primes p and all integers a=1. Then it is easy to verify that

%,1(n) = Z u(d)/h(d).

Hence
2 o(mn =3 n 3 p(d)h(d) =
RS Xx n=x d%n
d* 2 (d)
e I =
_dkmzﬁ'xd my2(d)/h(d) = ds%" @ m<§¢k m
(5.6) .
= d* u2(d) |
= &2 @ {Zd"“+ [d_*]}_

I

T S 00 3 E@E D+ 3 @),
d= d=x} d=xl/k

But A(p)=p'—p'~2—1=p'/2, so that if d is square free, h(d)=d'2-“9, Hence
2 w(dd*h(d) = O(x'~*-1+1+9K) = O(x7?),
d=x1/k
2 (d)/h(d) = 0().

iz xM

Hence it follows from (5.6) that

oo 2(d
(5.7) 3 cueualmn = "'x deh(((})-i-om.
From (1.4) we have E; ,(n)=o(n), so Z'E,.._,(n)-—-o(x-). Hence from (5.3) and
(5.5), we have n=x
(5.8) 3 cuinann ~ XA OO

The lemma now follows from (5.7) and (5.8).
Theorem 5.1. We have

1 &
(3.9) = ; i(n) = ( l’*‘)x(-x))-
If the Riemann hypothesis is true, we have
(5.10) — 2‘ E, i(n) = O(x***D g(x)).

ProOOF. The theorem follows from (5.3), (5.4), (5.5) and the lemma.

Remark. We note that if /<k?, the average error as given by (5.9) is consider-
ably smaller than the error estimates (1.6) or (1.7). But if /=k?, the average error
is not much smaller than the error estimate (1.6). The estimate (5.10) suggests that
if the Riemann hypothesis is true, then there may be further improvements possible
in the estimation of the E; ;(n).
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