On an inequality of Marcinkiewiez and Zygmund

By J. MOGYORODI (Budapest)

1) The following classical inequality of Marcinkiewicz and Zygmund [1] is
well-known:

let X;, X5, ... be a sequence of independent random variables with E(X;) =0,
i=1,2,... and let p=1. Then there exists a constant 4 such that

1) = ae( 2

The constant A is absolute in the sense that it does not depend on p nor on n
(n=1,2 ...)
The idea of the proof is the following: one gives the inequality

zxip] CE[=2"

(where C,, is a constant depending only on p) in two ways: in the first one we obtain

E| max
1§k5n

E[max

1sk=n

p P
&= (%) @=n.

while in the second
C,=2*%, (p=]).

The first constant is non-bounded in the neighbourhood of p=1, while the second
in the neighboruhood of p= +-<=. Thus the solution 4=>1 of the equation

[_p_ p= 2p+2
p—1

is convenient for every p=1.

Let &(x)=xP?, (x=0) which, for p=1, is a convex function and put
Si=Xi+...4+X,; k=1,2, .... Then the preceding inequality can be written in the
following form:

E(max &(|S,)) = AE(®(S,)).

The aim of the present note is to generalize this inequality to a larger class of convex
functions @(x) with an absolute constant 4 which is convenient for each member
of this class.
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2) Let @(x) be a Young function, i.e. let
(1) ®(x) :fx(p(f] d, x=0,
o
where ¢(0)=0, ,.].iEL,‘P(’)z +eo, (1) is non-decreasing and continuous from

the right. A Young function @(x) is convex. Let us suppose further that the follow-
ing growth condition is satisfied: for x=0

(2) P (2x) = cP(x),
where ¢ is a positive constant. Putting
x¢(x)
= su
FE o)

one easily finds that 1 <p=c—1, further that for every ¢=1 and for x=0 we have

3) ?(ex) = 0" P(x),
particularly
D (2x) = 27 P(x).

Further let us consider the Young function ¥(x), which is the conjugate of
@(x) in the sense of Young, i.e. let ¥ (0)=0

Y(x)=sup {r: (1) = x}, x=0,
and

T(x):f:,b(r)dr, x=0.

Y(x) is the inverse of ¢(x) and we have ¢(yY(x))=x, Y(o(x))=x.
It is easily seen that the following inequality holds: for every u=0, v=0

uv = @(u)+ ¥ (v).

This inequality is due to Young. In the particular cases v=¢(«) and u=y(v) we
have the equalities

up(u) = @(u)+ ¥ (e ),

v (v) = DY (v)+ ¥ (v).
In some cases in this paper we also suppose that for x>0 the growth condition
@) Y2x)=c'¥(x)
holds, where ¢’ is a positive constant. Putting

0= sup

we have as above 1<=¢g=c¢"—1 and also the analogue of inequality (3).
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The growth condition (2) (resp. (4)) implies that @(x)=0 identically, or
@(x)=0, if x>0 (resp. ¥(x)=0 identically, or ¥(x)=0, if x=>0). It follows that
¢ (t)=0 for t=0 (resp. ¥ (1)=0, if 1=0).

For the proof of these we refer to [2], [3] and [5].

We have

e W) @(x)x
1= %m = R POow)’

since l,l;((p(.\'))%.r and the set of the values of ¢(x), when x varies over (0, +==)
is contained in the set {x: x>0}. Further, from the above inequality of Young
it follows that

Z xp(x) xe(x)/®(x) _ _ xp(x)/P(x) p
1 X —0®) — s xpPX) -1 sm6 p—1  p-1
Consequently, we have
|
5 —+—=1.
&) 1%

It follows that gi+< as pil (resp. pt+e as qil).

3) GARsIA [3] proved the following inequality: let @(x) be a Young function
and suppose that the growth condition (2) is satisfied. Let further ( £, F,) be a non-
negative submartingale and put j},‘=lrllfﬁxu Jx-

Then
E(Y(f)) = pE(Y (pf))),

where ¥ is the conjugate of @ in the sense of Young.

We will derive a consequence of this inequality. First we retormulate
Garsia’s inequality in a more precise form. Namely, we can drop the factor p
staying before the expectation on the right hand side of the preceding inequality.
We have thus

Lemma 1. If @(x) and ¥(x) are conjugate Young functions and @ satisfies
the growth condition (2) with

x@(x)
1 =
N P (x)

-c:+co,

Sfurther it (f,, F,) is a non-negative submartingale, then
E(Y(£) = E(Y(pf)).

Moreover, if ®(x) and ¥ (x) satisfy the growth conditions (2) and (4) respectively,
with

< 0= <

E(@(f) = ¢ E(®(1,).

+ m’
then
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Proor. Let a=0 be arbitrary and take
g =min(f,,a), n=12, ..

It is easy to see that Doob’s classical inequality

JE(x(fy = #) = E(fux(fif = 7)),

where y(A) denotes the indicator of the event 4 and A=0 is arbitrary, remains
valid if we substitute f by g:=1nﬁ1_ax g, i.e. we have
I=n

JE(x(gn = 7)) = E(f,1(gn = ).

Let us integrate this inequality on (0, +-<=) with respect to the positive and o-finite
measure generated by y(4) and use the Fubini theorem. We obtain

E(j";.dw(;.)] = E[f,,j"d.p(ﬁ.)].
Recalling that
f 2dy(2) = xp(x)— ¥ (x) = B(Y(x)),
‘we have
E(@( (&) = E( (&) = - E(pfu &)
The right hand side will be majorated by the aid of the inequality of Young:

GEat w(1) = o(Y(1)+ 2 (v).
This gives

E(@() (&) = % E(@() (2))) +%E(W(pf.))-

Since E(®W(g}))=®(¢(a)), we obtain

1 1
(1-2) E@w @) =+ Ew ).
Notice also that by the growth condition (2)

_ . xp(x) ¥ (x)x
P=em = oum)’

P(Y (x)) = x¢ (x) - ¥ (x)

. N 4 C)) g ¥(x)
Py(x) W) ° oY)

(P—DPY ) = ¥X).

.and thus from

we have

“This implies that
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Comparing this with the preceding inequality one has

p—1 1 2 1
— —E(¥Y(g,)) =—E(Y(pf))
TR (¥(gn) - (¥ (pf)
or, in other words
E(¥(g)) = E(¥(pfy)-
If at+== then gitf,” and thus by the Beppo Levi theorem

E('P(f))) = E(¥(pfn)-
The first part of our assertion is thus proved.

If both @(x) and ¥(x) satisfy the growth condition (2) and (4) respectively,
then the role of these is symetric. Thus on the basis of the preceding inequality

we can write
E(®(f)) = E(®(qf,).

Since g=1 we have @(qf,)=q°®(f,). This and the preceding inequality give the
second part of the assertion.

REMARK. Our inequality is more precise than Garsia’s one. The second part
of the assertion is a direct generalization of the classical inequality of Doos: if
p=1 and p~'4¢ '=1 then

E(fa?) = ¢"E(fD).

4) BickeL proved the following inequality ([6]): let X, X,, ..., X, be inde-
pendent and symmetrically distributed random variables. Let further g(x) be a
convex function. Then

(6) P(max g(5,) =¢) =2P(g(S,) =¢), &=0,

1=k=n

where S,=X;+...+X;, k=1,2, ..., n.
This inequality is a generalization of the Lévy inequality.
We now prove the following

Lemma 2. Let X,, X,, ..., X, be independent random variables with E(X;)=0,
i=1,2, ...,n. Let further ®(x) be a Young function satisfying the growth condition

D(2x) = cP(x)
Jor every x=0 with a constant c¢. Put

x¢p(x)
= sSu "
P e (0

Then
E(max &(|S))) = 2°*2E(2(S,])-

REMARK. BICKEL [6] proved the same inequality but his constant is 4¢. For our
purposes we need the constant 27*2, which facilitates the comparison of this to the
constant of the inequality of Lemma 1. Notice that nothing is supposed about the
behaviour of the conjugate function ¥(x).
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PROOF. Suppose first that X, X,, ..., X, are symetrically distributed. Let us
consider the function @,(x) defined for x¢R such that

Py (x) = &y(—x)
and for x=0 we put @,(x)=®(x). Then ¥,(x) is also convex and by (6) we have
E(g&nﬁ ®,(S,) = 2E(9,(S,)).

Since &,(S,)=®(|S;|) we obtain that
E(glféxn(b(lsk )) = 2E(®(]S,).

In the general case we proceed as follows: let X7, X, ..., X, be random variables
such that X;, ..., X, X7, ..., X{ are independent, further for i=1,2, ...,n the
variables X; and X have the same distribution. Put Z,=X;,—X/, S/=X{+...
...+ X/, i=1, ..., n. Then the random variables Z; are independent and symetrically
distributed. Thus by the preceding remark

E(&'@u (1S Si) = 2E(P(|S,— S, ]))-
But by (3) )
&(1S,—S;) = ®(S,|+|S;) = #(2max (|S,), |S;|) =
= 22 &(max (|S,), S, ) = 27(®(/S, )+ 2(IS;))-
Consequently,
(7 E(max (|S,—S;)) = 2"+ 2 E(@(|S,]).

On the other hand, if F, denotes the smallest o-field generated by X,, X,, ..., X,,
we obtain by the submartingale property of the partial sums |S; — S;/| that

E(®(|Sc—SiDF,) = 2(|S,]),
from which
Jax E(®(|Sc—S{|F,) = Sons D (IS,
or, in other words -
E(max &(|S,—S;))F,) = max &(|S,))

with probability 1. It follows that ,
® Emax, #(5—SiD) = E(max, #(S.D)

(7) and (8) together give the desired result.

5) We are now in the position to formulate the generalization of the Mar-
cinkiewicz—Zygmund inequality.

We say that the Young function @ belongs to the class C if @(x) and its con-
jugate ¥ (x) satisfy the growth condition (2) and (4) respectively and the correspond-
ing quantities p and g are such that if p=p,>1 then g?=k, where k is a positive
contant.

Theorem. Let X,,X,, ... be independent random variables with E(X))=0,
i=1,2, .... Then for every ®¢€C there exists an absolute constant A such that

E(max #(S.)) = AE(2(.S,)).



On an inequality of Marcinkiewicz and Zygmund 273

ProOOF. By Lemma 1. we have
E(max @(1S:))) = ¢" E(®(/S,)).

By inequality (5) we see that ¢4+ as p,l.
By Lemma 2 we obtain

° E(max @(5,) = 272 E(@((S,))

Here 27*2,8 as pil and 2P*2t4c as pi+oo,

Since by our supposition we have for every p=p,=>1 that g?=k and since for
1 <p=p, the function 2?*2 is bounded and increasing we see that 4 =max (27*2, k)
is convenient for every p=1. This proves the assertion.

6) The class C considered in the Theorem obviously contains the functions
@ (x)=x*/x, where a>1. In fact, in this case ¥(x)=x"/f, where a1+ 1=1.
Now p=a and g=f; it follows that gP=f*—+e as a— +o=.

To show that C is larger than this special class, let us consider the following
function investigated by KrAsNOSELSKII and RuTtickil. Let R(x) be a non-negative
and non-decreasing function, which is differentiable and has continuous derivative
r(x). Suppose that

s o ur(u)
R - B

Assume further that for =1 the function

& (u) = -E; R(u)

is a Young function, i.e.
o d ——- TN | [
@(u) = oy [ R(u)) W TR(u) |1 +——=

ur(u)
aR(u)

is strictly increasing and ¢(u) =+ as u—+4-o=.
It follows easily that
p= up i) a+ty
P (u)

u=0

is finite. Further we have

(o) = up(u)—d(u) = u*R(u )[1+:;E:; _l_]

thus
o up(u) up(u) up(u)
g & O Y(e) b o)

ur(u)
aR(u) 1 1 o
= sup = l"r =l s,
u=0 ur(u) 1 1+ inf @ ur(u) a—1 a—1

aR(u) « e R(u)
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From this it follows that

a4y

x

qu[ ] - 8,
or—1

if 2+, Thus the functions l;l—R(:u) belong to the class C.
As an example, let R(u)=(log (1+u))’, where y=1. In this case

y(log (1+u))—?
1 +u

r(u) =

and
u T s

jEE (14u)log(l+4u) =1 JEE R(u) s

ur(u) )
w=0 R(“) }
Further,

S si , L W (log(1+w)-?
o) = w(log (1+u))y+ Y Tia :

For y=1 the functions (log(1+u))’~* and w«*/(u+1) are increasing and conti-
nuous. Thus ¢(u) strictly increases, it is continuous and lim ¢(u)= +<. Con-
sequently, ik s

b (u) = u?(log(l+u))'f’; y=1,a=1

is a Young function.

Let X, X,, ... be a sequence of independent random variables with zero mean
value and put Sy=X,+...+X;. Then on the basis of the preceding example and
the theorem we have for y=1 and z=>1

E(max |S,[*(log (1+S,)") = AE(|S,[*(log (1+]S,1)"),

where A4 is an absolute constant.

References

[1] J. Marcinkiewicz and A. Zyomunp, Quelques théoremes sur les fonctions indépendantes.
Studia Mathematica. 7 (1938). 104—120.

[2] M. A. KrasnoseLskil and YA, B. Rurmickil, Convex functions and Orlicz spaces. (Translated
by L. F. BoroN) Noordhoff, Groningen, 1964.

[3] A. M. GArsiA, On a convex function inequality for martingales. Annals of Probabilitv. 1 (1973)
171—174.

[4] A. M. Garsia, Matringale inequalities. Seminar Notes on Recent Progress. Benjamin, Reading.
1973.

[5] J. NEvEu, Martingales a temps discret. Masson, Paris, 1972.

[6] P. J. BickeL. A Hajek—Rényi extension of Lévy’s inequality and some applications. Acta Matl
Acad. Sci. Hungaricae. 21 (1970) 199—206.

{ Received October 6, 1976.)



