On an inequality of Marcinkiewiez and Zygmund

By J. MOGYORÓDI (Budapest)

1) The following classical inequality of Marcinkiewicz and Zygmund [1] is well-known:

let $X_1, X_2, ...$ be a sequence of independent random variables with $E(X_i) = 0$, i=1, 2, ... and let $p \ge 1$. Then there exists a constant A such that

$$E\left(\max_{1 \le k \le n} \left| \sum_{i=1}^{k} X_i \right|^p\right) \le AE\left(\left| \sum_{i=1}^{n} X_i \right|^p\right).$$

The constant A is absolute in the sense that it does not depend on p nor on $n \in \{n=1, 2, \ldots\}$.

The idea of the proof is the following: one gives the inequality

$$E\left(\max_{1\leq k\leq n}\left|\sum_{i=1}^{k}X_{i}\right|^{p}\right)\leq C_{p}E\left(\left|\sum_{i=1}^{n}X_{i}\right|^{p}\right),$$

(where C_p is a constant depending only on p) in two ways: in the first one we obtain

$$C_p = \left(\frac{p}{p-1}\right)^p \quad (p > 1),$$

while in the second

$$C_p = 2^{p+2}, \quad (p \ge 1).$$

The first constant is non-bounded in the neighbourhood of p=1, while the second in the neighboruhood of $p=+\infty$. Thus the solution A>1 of the equation

$$\left(\frac{p}{p-1}\right)^p = 2^{p+2}$$

is convenient for every $p \ge 1$.

Let $\Phi(x)=x^p$, $(x\geq 0)$ which, for $p\geq 1$, is a convex function and put $S_k=X_1+\ldots+X_k$; $k=1,2,\ldots$. Then the preceding inequality can be written in the following form:

 $E(\max_{1 \le k \le n} \Phi(|S_k|)) \le AE(\Phi(|S_n|)).$

The aim of the present note is to generalize this inequality to a larger class of convex functions $\Phi(x)$ with an absolute constant A which is convenient for each member of this class.

2) Let $\Phi(x)$ be a Young function, i.e. let

(1)
$$\Phi(x) = \int_0^x \varphi(t) dt, \quad x \ge 0,$$

where $\varphi(0)=0$, $\lim_{t\to +\infty} \varphi(t)=+\infty$, $\varphi(t)$ is non-decreasing and continuous from the right. A Young function $\Phi(x)$ is convex. Let us suppose further that the following growth condition is satisfied: for x>0

where c is a positive constant. Putting

$$p = \sup_{x>0} \frac{x\varphi(x)}{\Phi(x)}$$

one easily finds that $1 , further that for every <math>g \ge 1$ and for $x \ge 0$ we have

(3)
$$\Phi(\varrho x) \leq \varrho^p \Phi(x),$$
 particularly

 $\Phi(2x) \leq 2^p \Phi(x).$

Further let us consider the Young function $\Psi(x)$, which is the conjugate of $\Phi(x)$ in the sense of Young, i.e. let $\psi(0)=0$

$$\psi(x) = \sup \{t: \varphi(t) \le x\}, \quad x > 0,$$

and

$$\Psi(x) = \int_{0}^{x} \psi(t) dt, \quad x \ge 0.$$

 $\psi(x)$ is the inverse of $\varphi(x)$ and we have $\varphi(\psi(x)) \ge x$, $\psi(\varphi(x)) \ge x$. It is easily seen that the following inequality holds: for every $u \ge 0$, $v \ge 0$

$$uv \leq \Phi(u) + \Psi(v)$$
.

This inequality is due to Young. In the particular cases $v = \varphi(u)$ and $u = \psi(v)$ we have the equalities

$$u\varphi(u) = \Phi(u) + \Psi(\varphi(u)),$$

$$v\psi(v) = \Phi(\psi(v)) + \Psi(v).$$

In some cases in this paper we also suppose that for x>0 the growth condition

$$(4) \Psi(2x) \leq c' \Psi(x)$$

holds, where c' is a positive constant. Putting

$$q = \sup_{x>0} \frac{x\psi(x)}{\Psi(x)}$$

we have as above $1 < q \le c' - 1$ and also the analogue of inequality (3).

The growth condition (2) (resp. (4)) implies that $\Phi(x)=0$ identically, or $\Phi(x)>0$, if x>0 (resp. $\Psi(x)=0$ identically, or $\Psi(x)>0$, if x>0). It follows that $\varphi(t)>0$ for t>0 (resp. $\psi(t)>0$, if t>0).

For the proof of these we refer to [2], [3] and [5].

We have

$$q = \sup_{x > 0} \frac{x\psi(x)}{\Psi(x)} \ge \sup_{x > 0} \frac{\varphi(x)x}{\Psi(\varphi(x))},$$

since $\psi(\varphi(x)) \ge x$ and the set of the values of $\varphi(x)$, when x varies over $(0, +\infty)$ is contained in the set $\{x: x>0\}$. Further, from the above inequality of Young it follows that

$$q \ge \sup_{x>0} \frac{x\varphi(x)}{x\varphi(x) - \Phi(x)} \ge \sup_{x>0} \frac{x\varphi(x)/\Phi(x)}{x\varphi(x)/\Phi(x) - 1} \ge \sup_{x>0} \frac{x\varphi(x)/\Phi(x)}{p - 1} = \frac{p}{p - 1}.$$

Consequently, we have

$$\frac{1}{p} + \frac{1}{q} \le 1.$$

It follows that $q \uparrow + \infty$ as $p \downarrow 1$ (resp. $p \uparrow + \infty$ as $q \downarrow 1$).

3) Garsia [3] proved the following inequality: let $\Phi(x)$ be a Young function and suppose that the growth condition (2) is satisfied. Let further (f_n, F_n) be a non-negative submartingale and put $f_n^* = \max_{1 \le k \le n} f_k$.

Then

$$E(\Psi(f_n^*)) \leq pE(\Psi(pf_n)),$$

where Ψ is the conjugate of Φ in the sense of Young.

We will derive a consequence of this inequality. First we retormulate Garsia's inequality in a more precise form. Namely, we can drop the factor p staying before the expectation on the right hand side of the preceding inequality. We have thus

Lemma 1. If $\Phi(x)$ and $\Psi(x)$ are conjugate Young functions and Φ satisfies the growth condition (2) with

$$1 0} \frac{x\varphi(x)}{\Phi(x)} < +\infty,$$

further it (f_n, F_n) is a non-negative submartingale, then

$$E(\Psi(f_n^*)) \leq E(\Psi(pf_n)).$$

Moreover, if $\Phi(x)$ and $\Psi(x)$ satisfy the growth conditions (2) and (4) respectively, with

$$1 < q = \sup_{x>0} \frac{x\psi(x)}{\Psi(x)} < +\infty,$$

then

$$E(\Phi(f_n^*)) \leq q^p E(\Phi(f_n)).$$

PROOF. Let a>0 be arbitrary and take

$$g_n = \min(f_n, a), \quad n = 1, 2,$$

It is easy to see that Doob's classical inequality

$$\lambda E(\chi(f_n^* > \lambda)) \leq E(f_n \chi(f_n^* > \lambda)),$$

where $\chi(A)$ denotes the indicator of the event A and $\lambda > 0$ is arbitrary, remains valid if we substitute f_n^* by $g_n^* = \max_{1 \le i \le n} g_i$, i.e. we have

$$\lambda E(\chi(g_n^* > \lambda)) \leq E(f_n \chi(g_n^* > \lambda)).$$

Let us integrate this inequality on $(0, +\infty)$ with respect to the positive and σ -finite measure generated by $\psi(\lambda)$ and use the Fubini theorem. We obtain

$$E\left(\int\limits_{0}^{g_{n}^{\star}}\lambda\,d\psi(\lambda)\right)\leq E\left(f_{n}\int\limits_{0}^{g_{n}^{\star}}d\psi(\lambda)\right).$$

Recalling that

$$\int_{0}^{x} \lambda \, d\psi(\lambda) = x\psi(x) - \Psi(x) = \Phi(\psi(x)),$$

we have

$$E(\Phi(\psi(g_n^*))) \leq E(f_n\psi(g_n^*)) = \frac{1}{p} E(pf_n\psi(g_n^*)).$$

The right hand side will be majorated by the aid of the inequality of Young:

$$v\psi(t) \leq \Phi(\psi(t)) + \Phi(v).$$

This gives

$$E(\Phi(\psi(g_n^*))) \leq \frac{1}{p} E(\Phi(\psi(g_n^*))) + \frac{1}{p} E(\Psi(pf_n)).$$

Since $E(\Phi(\psi(g_n^*))) \leq \Phi(\psi(a))$, we obtain

$$\left(1 - \frac{1}{p}\right) E\left(\Phi(\psi(g_n^*))\right) \leq \frac{1}{p} E\left(\Psi(pf_n)\right).$$

Notice also that by the growth condition (2)

$$p = \sup_{x>0} \frac{x\varphi(x)}{\Phi(x)} \ge \sup_{x\geq 0} \frac{\psi(x)x}{\Phi(\psi(x))},$$

and thus from

$$\Phi(\psi(x)) = x\psi(x) - \Psi(x)$$

we have

$$1 = \frac{x\psi(x)}{\Phi(\psi(x))} - \frac{\Psi(x)}{\Phi(\psi(x))} \le p - \frac{\Psi(x)}{\Phi(\psi(x))}.$$

This implies that

$$(p-1) \Phi(\psi(x)) \ge \Psi(x).$$

Comparing this with the preceding inequality one has

$$\frac{p-1}{p}\frac{1}{p-1}E(\Psi(g_n^*)) \leq \frac{1}{p}E(\Psi(pf_n)),$$

or, in other words

$$E(\Psi(g_n^*)) \leq E(\Psi(pf_n)).$$

If $a \uparrow +\infty$ then $g_n^* \uparrow f_n^*$ and thus by the Beppo Levi theorem

$$E(\Psi(f_n^*)) \leq E(\Psi(pf_n)).$$

The first part of our assertion is thus proved.

If both $\Phi(x)$ and $\Psi(x)$ satisfy the growth condition (2) and (4) respectively, then the role of these is symetric. Thus on the basis of the preceding inequality we can write

$$E(\Phi(f_n^*)) \leq E(\Phi(qf_n)).$$

Since q>1 we have $\Phi(qf_n) \leq q^p \Phi(f_n)$. This and the preceding inequality give the second part of the assertion.

REMARK. Our inequality is more precise than Garsia's one. The second part of the assertion is a direct generalization of the classical inequality of Doob; if p>1 and $p^{-1}+q^{-1}=1$ then

$$E(f_n^{*p}) \leq q^p E(f_n^p).$$

4) BICKEL proved the following inequality ([6]): let $X_1, X_2, ..., X_n$ be independent and symmetrically distributed random variables. Let further g(x) be a convex function. Then

(6)
$$P(\max_{1 \le k \le n} g(S_k) \ge \varepsilon) \le 2P(g(S_n) \ge \varepsilon), \quad \varepsilon > 0,$$

where $S_k = X_1 + ... + X_k$, k = 1, 2, ..., n.

This inequality is a generalization of the Lévy inequality.

We now prove the following

Lemma 2. Let $X_1, X_2, ..., X_n$ be independent random variables with $E(X_i) = 0$, i = 1, 2, ..., n. Let further $\Phi(x)$ be a Young function satisfying the growth condition

$$\Phi(2x) \le c\Phi(x)$$

for every $x \ge 0$ with a constant c. Put

$$p = \sup_{x>0} \frac{x\varphi(x)}{\Phi(x)}.$$

Then

$$E(\max_{1\leq k\leq n}\Phi(|S_k|))\leq 2^{p+2}E(\Phi(|S_n|)).$$

REMARK. BICKEL [6] proved the same inequality but his constant is 4c. For our purposes we need the constant 2^{p+2} , which facilitates the comparison of this to the constant of the inequality of Lemma 1. Notice that nothing is supposed about the behaviour of the conjugate function $\Psi(x)$.

PROOF. Suppose first that X_1, X_2, \dots, X_n are symetrically distributed. Let us consider the function $\Phi_1(x)$ defined for $x \in R$ such that

$$\Phi_1(x) = \Phi_1(-x)$$

and for $x \ge 0$ we put $\Phi_1(x) = \Phi(x)$. Then $\Phi_1(x)$ is also convex and by (6) we have

$$E(\max_{1\leq k\leq n}\Phi_1(S_k)\leq 2E(\Phi_1(S_n)).$$

Since $\Phi_1(S_k) = \Phi(|S_k|)$ we obtain that

$$E(\max_{1 \le k \le n} \Phi(|S_k|)) \le 2E(\Phi(|S_n|)).$$

In the general case we proceed as follows: let X'_1, X'_2, \dots, X'_n be random variables such that $X_1, \ldots, X_n, X_1', \ldots, X_n'$ are independent, further for $i=1, 2, \ldots, n$ the variables X_i and X_i' have the same distribution. Put $Z_i = X_i - X_i'$, $S_i' = X_1' + \ldots + X_i'$, $i=1,\ldots,n$. Then the random variables Z_i are independent and symetrically distributed. Thus by the preceding remark

$$E\left(\max_{1\leq k\leq n}\Phi(|S_k-S_k'|)\right)\leq 2E\left(\Phi(|S_n-S_n'|)\right).$$

But by (3)

$$\Phi(|S_n - S_n'|) \le \Phi(|S_n| + |S_n'|) \le \Phi(2 \max(|S_n|), |S_n'|) \le$$

$$\leq 2^p \Phi(\max(|S_n|, |S_n'|)) \leq 2^p (\Phi(|S_n|) + \Phi(|S_n'|)).$$

Consequently,

(7)
$$E(\max_{1 \le k \le n} (|S_k - S_n'|)) \le 2^{p+2} E(\Phi(|S_n|)).$$

On the other hand, if F_n denotes the smallest σ -field generated by $X_1, X_2, ..., X_n$, we obtain by the submartingale property of the partial sums $|S_k - S'_k|$ that

$$E(\Phi(|S_k - S_k'|)F_n) \ge \Phi(|S_k|),$$

from which

$$\max_{1 \leq k < n} E(\Phi(|S_k - S_k'|) F_n) \geq \max_{1 \leq k \leq n} \Phi(|S_k|),$$

or, in other words

$$E(\max_{1 \le k \le n} \Phi(|S_k - S_k'|) F_n) \ge \max_{1 \le k \le n} \Phi(|S_k|)$$

with probability 1. It follows that

(8)
$$E\left(\max_{1 \le k \le n} \Phi(|S_k - S_k'|)\right) \ge E\left(\max_{1 \le k \le n} \Phi(|S_k|)\right).$$

(7) and (8) together give the desired result.

5) We are now in the position to formulate the generalization of the Mar-

cinkiewicz-Zygmund inequality.

We say that the Young function Φ belongs to the class C if $\Phi(x)$ and its conjugate $\Psi(x)$ satisfy the growth condition (2) and (4) respectively and the corresponding quantities p and q are such that if $p \ge p_0 > 1$ then $q^p \le k$, where k is a positive contant.

Theorem. Let $X_1, X_2, ...$ be independent random variables with $E(X_i) = 0$, $i=1, 2, \ldots$ Then for every $\Phi \in C$ there exists an absolute constant A such that

$$E(\max_{1 \le k \le n} \Phi(|S_k|)) \le AE(\Phi(|S_n|)).$$

PROOF. By Lemma 1. we have

$$E(\max_{1\leq k\leq n}\Phi(|S_k|))\leq q^p E(\Phi(|S_n|)).$$

By inequality (5) we see that $q^p \uparrow +\infty$ as $p \downarrow 1$.

By Lemma 2 we obtain

$$E(\max_{1\leq k\leq n}\Phi(|S_k|))\leq 2^{p+2}E(\Phi(|S_n|)).$$

Here $2^{p+2} \downarrow 8$ as $p \downarrow 1$ and $2^{p+2} \uparrow +\infty$ as $p \uparrow +\infty$.

Since by our supposition we have for every $p \ge p_0 > 1$ that $q^p \le k$ and since for $1 the function <math>2^{p+2}$ is bounded and increasing we see that $A = \max(2^{p_0+2}, k)$ is convenient for every p > 1. This proves the assertion.

6) The class C considered in the Theorem obviously contains the functions $\Phi(x) = x^{\alpha}/\alpha$, where $\alpha > 1$. In fact, in this case $\Psi(x) = x^{\beta}/\beta$, where $\alpha^{-1} + \beta^{-1} = 1$.

Now $p=\alpha$ and $q=\beta$; it follows that $q^p=\beta^{\alpha}\to e$ as $\alpha\to +\infty$.

To show that C is larger than this special class, let us consider the following function investigated by Krasnoselskii and Rutickii. Let R(x) be a non-negative and non-decreasing function, which is differentiable and has continuous derivative r(x). Suppose that

$$\inf_{u>0} \frac{ur(u)}{R(u)} = 0, \quad \sup_{u>0} \frac{ur(u)}{R(u)} = \gamma < +\infty.$$

Assume further that for $\alpha > 1$ the function

$$\Phi(u) = \frac{u^{\alpha}}{\alpha} R(u)$$

is a Young function, i.e.

$$\varphi(u) = \frac{d}{du} \left(\frac{u^{\alpha}}{\alpha} R(u) \right) = u^{\alpha - 1} R(u) \left[1 + \frac{ur(u)}{\alpha R(u)} \right]$$

is strictly increasing and $\varphi(u) \to +\infty$ as $u \to +\infty$.

It follows easily that

$$p = \sup_{u > 0} \frac{u\varphi(u)}{\Phi(u)} = \alpha + \gamma$$

is finite. Further we have

$$\Psi(\varphi(u)) = u\varphi(u) - \Phi(u) = u^{\alpha}R(u)\left[1 + \frac{ur(u)}{\alpha R(u)} - \frac{1}{\alpha}\right],$$

thus

$$q = \sup_{u>0} \frac{u\psi(u)}{\Psi(u)} = \sup_{\varphi(u)>0} \frac{u\varphi(u)}{\Psi(\varphi(u))} = \sup_{u>0} \frac{u\varphi(u)}{\Psi(\varphi(u))} =$$

$$= \sup_{u>0} \frac{1 + \frac{ur(u)}{\alpha R(u)}}{1 + \frac{ur(u)}{\alpha R(u)} - \frac{1}{\alpha}} = 1 + \frac{1}{\alpha - 1 + \inf_{u>0} \frac{ur(u)}{R(u)}} = 1 + \frac{1}{\alpha - 1} = \frac{\alpha}{\alpha - 1}.$$

From this it follows that

$$q^{p} = \left(\frac{\alpha}{\alpha - 1}\right)^{\alpha + \gamma} \to e,$$

if $\alpha \to +\infty$. Thus the functions $\frac{u^{\alpha}}{\alpha}R(u)$ belong to the class C.

As an example, let $R(u) = (\log (1+u))^{\gamma}$, where $\gamma \ge 1$. In this case

$$r(u) = \frac{\gamma (\log (1+u))^{\gamma-1}}{1+u}$$

and

$$\sup_{u>0} \frac{ur(u)}{R(u)} = \gamma \sup_{u>0} \frac{u}{(1+u)\log(1+u)} = \gamma; \quad \inf_{u>0} \frac{ur(u)}{R(u)} = 0.$$

Further,

$$\varphi(u) = u^{\alpha - 1} (\log (1 + u))^{\gamma} + \frac{u^{\alpha}}{\alpha} \frac{(\log (1 + u))^{\gamma - 1}}{1 + u}.$$

For $\gamma \ge 1$ the functions $(\log (1+u))^{\gamma-1}$ and $u^z/(u+1)$ are increasing and continuous. Thus $\varphi(u)$ strictly increases, it is continuous and $\lim_{u\to +\infty} \varphi(u) = +\infty$. Consequently,

$$\Phi(u) = \frac{u^{\alpha}}{\alpha} (\log (1+u))^{\gamma}; \quad \gamma \ge 1, \ \alpha > 1$$

is a Young function.

Let $X_1, X_2, ...$ be a sequence of independent random variables with zero mean value and put $S_k = X_1 + ... + X_k$. Then on the basis of the preceding example and the theorem we have for $\gamma \ge 1$ and $\alpha > 1$

$$E\left(\max_{1\leq k\leq n}|S_k|^2(\log(1+|S_k|))^\gamma\right)\leq AE\left(|S_n|^2(\log(1+|S_n|))^\gamma\right),$$

where A is an absolute constant.

References

- J. MARCINKIEWICZ and A. ZYGMUND, Quelques théorèmes sur les fonctions indépendantes. Studia Mathematica. 7 (1938), 104—120.
- [2] M. A. Krasnoselskii and Ya. B. Rutickii, Convex functions and Orlicz spaces. (Translated by L. F. Boron) Noordhoff, Groningen, 1964.
- [3] A. M. GARSIA, On a convex function inequality for martingales. Annals of Probability. 1 (1973) 171—174.
- [4] A. M. Garsia, Matringale inequalities. Seminar Notes on Recent Progress. Benjamin, Reading, 1973.
- [5] J. NEVEU, Martingales à temps discret. Masson, Paris, 1972.
- [6] P. J. BICKEL, A Hájek—Rényi extension of Lévy's inequality and some applications. Acta Math Acad. Sci. Hungaricae. 21 (1970) 199—206.

(Received October 6, 1976.)