On the orthonormal frame bundle of a Riemannian manifold

By PETER T. NAGY (Szeged)

1§. Introduction

There are more possibilities to introduce Riemannian metrics on the tangent
bundle or on the tangent sphere bundle of a Riemannian manifold. One of the most
natural metrics is introduced by S. SASAKI in [4]. In recent papers KLINGENBERG
and Sasakl [1] and the author [2] investigated the tangent sphere bundle of a
Riemannian 2-sphere and in generally of a 2-manifold, respectively.

However, the tangent sphere bundle of an oriented 2-manifold is isomorphic
to its orthonormal frame bundle. So, it is a natural question: How could we define
a Riemannian metric on the orthonormal frame bundle of a Riemannian manifold
analogously to the Sasaki metric, and how could we generalize the results in [1]
and [2]. The purpose of the present paper is to answer for these questions.

We shall characterize the geodesics on O(M) in §4.

In §5, we consider the case when the basic manifold is locally symmetric.

In §6, we investigate the geometry of the orthonormal frame bundle of
an n-sphere.

Here I express my gratitude to Professor A. M. VAsiL’Ev (Moscow State
University) for turning my attention to this problem and for many valuable sug-
gestions.

2§. Preliminaries

Let R" be the linear euclidean space and V" denote the manifold of orthonormal
n-frames in R". The orthogonal group O(n) acts simply transitively on V" It is
possible to define a Riemannian metric on V", which is invariant with respect to
the action of O(n) on V", in a natural manner. The construction may be described

as follows.
Let z(1)=(e,(), ..., e, (1)) be a curve on V" Let z(r) be a corresponding

curve on O(n):
z(1) = a(t)z(1,).
The Riemannian metric ¢ on V" at z(z,) is defined by
|
£(2,2) = 3 Trace (™),

where " is the transponed matrix and point denotes the derivation by 7. Let E;_
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(i>k) denote the usual basis of the orthogonal Lie algebra o(n), and let
o= Zw,-k Eik' Then
i=k
Z.(rn) = (..., é;(rn)._ ...) = d::(fo) - (..., Zk CD,-kek. ..-)-_.
and

0 8 = 3 (@w*

Now, let M be a Riemannian manifold and g denote its metric tensor. We can
define a family of natural Riemannian metrics on the orthonormal fram bundle
O(M) as follows.

Let X, Y be tangent vectors at ucO(M), and x=p(u), where p: O(M)-M
is the projection map. We denote by vX and vY the vertical components of X and
Y, and by g, the Riemannian metric on the manifold O,(M), defined by the former
construction. Then the metric ¢ on O(M) is defined by

(2 g(X,Y) = g(dp X, dpY)+02.(vX, vY),
where ¢ is an arbitrary positive constant.

3§. The Riemannian connection on O (M)

We denote by w, and w,; the components of the R"-valued basic form and
of the o(n)-valued Riemannian connection form on O(M) respectively. It is well
known that they define a parallelization of the total manifold O(M). The Rieman-
nian metric (1) can be expressed with help of these forms:

3) dp*ds® = 3 (w)*+e¢ g; (@y)*.

i=1

It follows that the parallelization defined by the coframe consisting from the forms

-
. 0, =w;, Oy =YVowy
is orthonormal, and

dp*dst = 3 (0)'+ 3 (0"
i=1 i=k
Theorem 1. The Riemannian connection on O(M) can be reduced to the bundle of

.orthonormal absolute parallelization defined by the forms ©;, ©;. The components
O; s Ojx- O s Oy of this connection form can be expressed as follows:

0, =wx—Vef2 !_Z Rimix © 1 »
Ok = "IFE/ZRijkmem‘
O =— FE/ 2Ry4im O s

| »
Oiiu= m (Oud;— 00, +0 ;0,—0,;0,).
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PrOOF. Since the components of the metric tensor g are g, =0d,, & u=0,
Zij,u=0,0;, it is sufficient to prove that the components @, are antisymmetric:
Ok + O k=0 and that the components of the torsion form d@;+ @ ;x/\ O vanish
identically (the indices 7, K run over 1, ..., n and over the pairs (i, k), i>k). But
they are easily verifiable consequences of the structure equations

dUJ,’ — _(IJMAOJ&,

|
dwy = — @y /\ Wy +3 Riymo/\o,,.

4§. Geodesics on O (M)

In the following we denote by s the arc-length parameter of curves on the
basic manifold M and by § the arc-length parameter of curves on O(M). Let dash
denote the derivation by s and point the derivation by 5.

Let u=(x, e, ...,e,)c0(M), XeT,O(M). We denote by 4(X) the following

element of TMAT M:
;.(X) = Zwike;/\ek.
i=k

It is clear that the tensor of curvature R at xéM can be regarded as a map
RAT MNT . M@T M—~T,M, and so the expression R(A(X)®dp(X)) has meaning.

Theorem 2. The curve (x(s), e,(s). ..., e,(s)) is a geodesic on O(M) with re-
spect to the metric (1) if and only if
a) the first vector of curvature V,x' of the curve x(s) is

Vix' = oR(AL(u)®x’),
where x"=dp(u’),
b) the bivector field i (u") is parallel along x(s),
c) the curve t(s, sy)ey(s), ..., t(s, so)e,(s) is an affinely parametrized geodesic
on O (M), where t(s, s3): Ty M~ T, M denotes the operator of parallel transla-
tion along x(s).

PROOF. Let u(3)=(x(3), €,(5), ..., €,(5)) be a curve on O(M). It is a geodesic
if and only if its tangent vector u satisfies the differential equations

d
—=0,+6,,6,+ 3 0,,,0,, =0,
d

E@if+9.jj'k9t+ Z Gl'_f,kfaﬂ = 0.
k=l

Now, using Theorem 1 we can rewrite the above equations as follows:

?G)i']rwikwk_'@ Z Rijim @@y = 0,
S k=1

"'d_a)”' - 0,

10 o
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where X=w,;(i1)e;, Vie;=w; (i) e,. These equations are in coordinate free formula-
tion
(4) Vix = oR(A(i1)®X),

(5) V,(A()) = 0.

The equation (5) means that the curve (t(5, 5,)e;, ..., 7(5, 5)e,) is an affinely para-
metrized geodesic on O, ,(M). Thus the length of its tangent vector is constant:
g(vit, vit) = 3 (wy (11))* = constant.

i~k
From this follows that g(dp (i), dp(i))= > (w;(i1))*=constant, as well.
i=]
n 1/2
Let b= Z(w,-(ﬁ))zl p
i=1
If b=0, the conditions of Theorem are proved.
If b=0 we can rewrite the equation (3):

Vox’ = oR(.(u")®X’),
and so get the condition (a).
Now, let (x(s), &(s), ..., €,(s)) be a curve on O(M) satisfying conditions
(a), (b), (¢). Then
V,x'=R(Aw)®x’), V(i(u)) =0,

and so the equations of geodesics (4) and (5) are fulfilled.

5§. The locally symmetric case

Now we shall investigate the case, when the basic Riemannian manifold is
locally symmetric, i.e. VR=0.

Let a geodesic (x(s), &,(s), ..., €,(s)) on O(M) be given. Then by Theorem 2
V.x'=9R(A(W)®x’). We denote the operator R.(A(u")): T . M—~T,M along the
curve x(s) by K, and the vector x” by v,. It is clear that the operator K, is anti-
symmetric with respect to the scalar product g. Moreover it follows from VR=0
and from Theorem 2 that V,K=0.

The i™® curvature x; and the i"™ vector of curvature x;v;,, of the curve x(s)
on M are defined by the generalized Frenet formulas

Voo, = %y 0,,
(6) Vev; = =301+ %0;44,

stn == Hp-1Up-1s
=2 ..., 0~=],

Lemma. The curvatures #,, ..., #,_, of the curve x(s) are constant.

ProoF. We shall prove the Lemma by induction on i. The vectorfields
Wy, ..., w, along x(s) are defined by the recurrence

wy=10;, w;=Vow_; =0 1K1y,
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We assume x,, ..., #;,_, are constant. Then the vectors of the Frenet frame can

!
be expressed as linear combinations ;= > c¢;w;, where the coefficients ¢,, ..., ¢;
are constant. =3

It follows that Vo, = Z’c iWis1e

Now, we get that g(V,tl,V,z,) is constant. In fact,

V,(g(Vyv;, Vov) = 208 (K 2’ CjWi1s Z" cjw“]] =0
j=1 =1

since K is antisymmetric. But we have by (5)
g(Vev;, Vov) = x}_1 +4,
thus x»;_,=constant implies that »;,=constant as well.

Theorem 3. Let (x(s), e,(s), ..., e,(s)) be a geodesic on O(M). Then the i
vector of curvature of the curve x(s) can be expressed in the form

e : S um i Dy
#1041 = (g0 oo %) T HWEOWi i Wy W1 - a)s

(i+1=-2m=1), where u{¥ =p, ;(3,, ..., %,_,) and the polynomials p, ;(x,, ..., x;_;)
(k=0) are defined by the rectirrence

Pro=1,
Pk, j :Pk—l.j+xf—1pk—2.j-1a if k+1=>2j,
and P.i=0 if k+1=2j,j#0.

The proof is the same as of Theorem 3 in [3].

6§. On the orthonormal frame bundle of the n-sphere

We denote by S the n-sphere of radius r. It is well known that there is
a natural diffeomorphism ¢ of O(S!) on the manifold V"*+! of orthonormal frames
in R"*!', which maps an n-frame (x,e,, ...,e,)E0(S") on the n+l1-frame

(rlx, By b BIEPYRE,

Theorem 4. The map ¢: O(S})—~V"*' is a homothety with respect to the
Riemannian metrics (2) and (1), respectively, if and only if r*=o. In this case the
ratio of homothety is r*.

OOF. Let u=(x,e,, ..., e,)E€ ") an u)=(ey, €y, ..., €,)EV"*, where
Proor. L (x, & WEO(S)) and @ (u)=(e, ¢ WEV"*!, wh
eozlx. We can write

r

dx = w,e;, de;=—w;x+wye,
and
dey = wy;¢;, de; = wyey+wye,

10*
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respectively, where i, k=1, ..., n. From these follows w,=rw,. since x=re,.

Riemannian metrics on O(S)) and on V"*! are

ds? = D (w)*+e 2 (0y) = 1 3 (wi)*+0 2 (wy)*
; i~k

i=k i

and
ds? = J (w)*+ 2 (wy)™
i i=k

respectively, from which the Theorem follows.
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