Remarks on the limit inferior of a filtered set-family

By G. GRIMEISEN (Stuttgart)

It is well-known (see Kuratowski [6], p. 242) that in each metric space E the limit inferior $\liminf_{n\to\infty} A_n$ of each sequence (A_n) with $A\subseteq E$ is the set of all $x\in E$ such that there exist an $n_0(x)\in\mathbb{N}$ and a sequence $(a_n(x))$ in E with $a_n(x)\in A_n$ for all $n\ge n_0(x)$ and $x=\lim_{n\to\infty} a_n(x)$. In this paper, we give (in Proposition 3) a modified generalization of this statement to a (general) topological space E and the limit inferior $\lim_{n\to\infty} \inf(f,I,\alpha)$ of a filtered family (f,I,α) with $f(i)\subseteq E$ for all $i\in I$.

For the remainder, let (E, τ) be a topological space, \mathfrak{B}_{τ} the neighborhood operator, $\operatorname{Lim}_{\tau}$ the limit operator, lim inf_{\tau} the limit inferior induced by the topology \tau. For abbreviation, we write just \mathfrak{B} , Lim , lim inf instead of \mathfrak{B}_{τ} , $\operatorname{Lim}_{\tau}$, lim inf_{\tau} if no confusion can arise.

- 1. Terminology. In every respect we shall use the same terminology as used or introduced in [4]. For nonempty sets I and K and filters $\mathfrak a$ and $\mathfrak b$ on I and K, respectively, $\mathfrak a \otimes \mathfrak b$ denotes the ordinal product of $\mathfrak a$ and $\mathfrak b$ (which is a filter on $I \times K$) (see [3], p. 330 and p. 336, Satz 23). Given a filter $\mathfrak a$ on a set I and $A \in \mathfrak a$, $\mathfrak a_A$ denotes the trace of $\mathfrak a$ in the set A; furthermore, if, for each $i \in I$, a statement form H(i) containing i as a free variable is given, we say that H(i) holds "for $\mathfrak a$ -almost all $i \in I$ " if and only if, for some $A \in \mathfrak a$, H(i) holds for all $i \in A$. Given a mapping f and a set $B \subseteq \mathcal{D} f$, we denote the restriction of f to g by g. Recall that, for each set g, g denotes the class of all filtered families in g. For each directed set g, i.e. for each set g with a reflexive and transitive relation g such that each finite subset of g has an upper bound w.r. to g, we denote by g the "filter of perfinality" on g, which is defined to be the filter on g generated by the set g and g is the filter of perfinality on g and g is a directed set, and so g (g is the filter of perfinality on g is a directed set, and so g (g is the filter of perfinality on g is a directed set, and so g (g is the filter of perfinality on g is a directed set, and so g (g is the filter of perfinality on g is a directed set, and so g is the filter of perfinality on g is a directed set, and so g is the filter of perfinality on g is the filter of perfinality on g is the filter of perfinality on g is a directed set, and so g is the filter of perfinality on g is the filter of perfinality on g is the filter of perfinal to g in g is the filter of g in g
- 2. Connection between lim inf and Lim. The mapping lim inf is an extension of the mapping Lim in the sense of

Proposition 1. Let \varkappa denote the mapping $x \mapsto \{x\}$ on E into $\mathfrak{P}E$. Then

$$\operatorname{Lim}(f, I, \mathfrak{a}) = \operatorname{lim}\inf(\varkappa \circ f, I, \mathfrak{a})$$

holds for all $(f, I, a) \in \Phi E$.

PROOF. Use of the definitions only.

While Proposition 1 remains true in general finitely additive quasitopological spaces (see Section 4), this is not the case for the next proposition:

Proposition 1'. In the notation of Proposition 1, one has:

$$\operatorname{Lim}(f, I, \mathfrak{a}) = \lim \inf (\tau \circ \varkappa \circ f, I, \mathfrak{a})$$

holds for all $(f, I, a) \in \Phi E$.

PROOF. Use that, for each $x \in E$, $\mathfrak{B}x$ is generated by the class of all open neighborhoods of x; furthermore that $f(i) \in \tau \{f(i)\}$ for all $i \in I$. \square

One half of the statement on $\liminf_{n\to\infty} A_n$ in the introduction is still true in general topological spaces:

Proposition 2. For all $x \in E$ and all $(f, I, a) \in \Phi(\mathfrak{P}E)$, the following statement form (a) implies (b):

- (a) There are an $A \in \mathfrak{a}$ and a $g \in \mathbb{P}_{i \in A} f(i)$ such that $x \in \text{Lim}(g, A, \mathfrak{a}_A)$.
- (b) $x \in \lim \inf (f, I, a)$.

PROOF. Use of the definitions of Lim and lim inf in terms of \mathfrak{B} . \square

The full generalization of the introductory remark on $\liminf_{n\to\infty} A_n$ is given by:

Proposition 3. For all $x \in E$ and all $(f, I, a) \in \Phi(\mathfrak{P}E)$, the following statement forms (a) through (d) are equivalent:

- (a) $x \in \lim \inf (f, I, a)$;
- (b) There exists a mapping g on $(\mathfrak{B}x)\times I$ into E with the following property: $g(V,i)\in f(i)$ for $((\mathfrak{F}(\mathfrak{B}x))\otimes\mathfrak{a})$ -almost all $(V,i)\in (\mathfrak{B}x)\times I$ and $x\in \text{Lim }(g,(\mathfrak{B}x)\times I,(\mathfrak{F}(\mathfrak{B}x))\otimes\mathfrak{a})$.
- (c) is obtained from (b) by replacing the quantifier "for $((\mathfrak{F}(\mathfrak{B}x))\otimes \mathfrak{a}$ -almost all" by "for $\{\mathfrak{B}x\}\otimes \mathfrak{a}$ -almost all".
 - (d) There are a $C \in (\mathfrak{F}(\mathfrak{B}x)) \otimes \mathfrak{a}$ and a $g \in \mathbf{P}_{(V,i) \in C} f(i)$ such that

$$x \in \text{Lim}(g, C, ((\mathfrak{F}(\mathfrak{B}x)) \otimes \mathfrak{a})_C).$$

PROOF. First recall that

(1)
$$\operatorname{Lim}(h, K, \mathfrak{x}) = \operatorname{Lim}(h_{\mathfrak{X}}, X, \mathfrak{x}_{\mathfrak{X}})$$

holds for each $(h, K, x) \in \Phi E$ and each $X \in x$. Let $x \in E$ and $(f, I, a) \in \Phi(\mathfrak{P}E)$. For abbreviation we put $\mathfrak{V}x = D$. Now we subdivide the proof.

- 1. By (1), (b) and (d) are equivalent.
- 2. Since $D \in \mathcal{F}D$, (c) implies (b).
- 3. We show that (a) implies (c). Suppose (a). Then, there is, for each $V \in D$, a set $A_V \in \mathfrak{a}$ such that

$$(2) V \cap f(i) \neq \emptyset for all i \in A_V.$$

Let $(A_V)_{V \in D}$ be a family of such sets A_V (use of the axiom of choice) and \mathfrak{B} the direct sum $\underset{V \in D}{S} A_V$ of the sets A_V (see [3], p. 325). Then (by (2)) there exists a $\chi \in \underset{(V,i) \in \mathfrak{B}}{\mathbf{P}} V \cap f(i)$ (use of the axiom of choice). Define a mapping g on $D \times I$ into E by letting

$$g(V, i) = \begin{cases} \chi(V, i) & \text{for all} \quad (V, i) \in \mathfrak{B}, \\ \chi & \text{for all} \quad (V, i) \in (D \times I) \setminus \mathfrak{B}. \end{cases}$$

Since $\mathfrak{B} \in \{D\} \otimes \mathfrak{a}$, we have

$$g(V, i) \in f(i)$$
 for $\{D\} \otimes \mathfrak{a}$ -almost all $(V, i) \in D \times I$.

Let $W \in D$. Then, by the definition of g,

$$g(V, i) \in V \cap f(i) \subseteq W \cap f(i) \subseteq W$$

holds for all (V, i) with $V \subseteq W$, $V \in D$ and $i \in A_V$, thus for $(\mathfrak{F}D) \otimes \mathfrak{a}$ -almost all $(V, i) \in D \times I$. By the choice of W, we obtain $x \in \text{Lim}(g, D \times I, (\mathfrak{F}D) \otimes \mathfrak{a})$. Therefore, (c) holds.

4. We show that (b) implies (a). Suppose (b). Let $V \in D$. Then, with the mapping g taken from (b), $g(W, i) \in V \cap f(i)$ holds for $(\mathfrak{F}D) \otimes \mathfrak{a}$ -almost all $(W, i) \in D \times I$ (consider that $(\mathfrak{F}D) \otimes \mathfrak{a}$ is a filter). Therefore, by the definition of $\mathfrak{F}D$ and of \otimes (use of [3], p. 330, Satz 13), there exists a set $U \in D$ and, for each $W \in D$ with $W \subseteq U$, a set $A_W \in \mathfrak{a}$ such that

$$g(W, i) \in V \cap f(i)$$
 for all $i \in A_W$.

Especially, we have $V \cap f(i) \neq \emptyset$ for all $i \in A_U$. By the choice of V, we obtain (a). \square

3. Applications of the preceding propositions. It would be desirable to regain "nice" properties of certain subspaces of $(\Re E, \Re \tau)$ (the power of (E, τ)) from corresponding or related properties of (E, τ) , or conversely, by means of the preceding propositions. A simple step in the desired direction can be seen in the next proposition.

Proposition 4. Let $\mathfrak{M} \subseteq (\mathfrak{P}E) \setminus \{\emptyset\}$ and assume $\{x\} \in \mathfrak{M}$ for all $x \in E$. Then, the subspace $(\mathfrak{M}, (\mathfrak{P}\tau)_{\mathfrak{M}})$ of $(\mathfrak{P}E, \mathfrak{P}\tau)$ is compact if and only if (E, τ) is compact.

PROOF. 1. Assume $(\mathfrak{M}, (\mathfrak{P}\tau)_{\mathfrak{M}})$ to be compact. Let $(f, I, \mathfrak{a}) \in \Phi E$ with an ultrafilter \mathfrak{a} . In the terminology within Proposition 1, one has $\mathfrak{M} \cap (\mathfrak{P} \text{ lim inf } (\varkappa \circ f, I, \mathfrak{a})) \neq \emptyset$, since $(\mathfrak{M}, (\mathfrak{P}\tau)_{\mathfrak{M}})$ is compact. Therefore, there is an $M \in \mathfrak{M}$ with $M \subseteq \liminf (\varkappa \circ f, I, \mathfrak{a}) = \liminf (f, I, \mathfrak{a})$ (use of Proposition 1), thus (since $M \neq \emptyset$) Lim $(f, I, \mathfrak{a}) \neq \emptyset$. Therefore, by the choice of (f, I, \mathfrak{a}) , (E, τ) is compact.

2. Assume that (E, τ) is compact. Let $(f, I, \alpha) \in \Phi \mathfrak{M}$ with an ultrafilter α . Since $\emptyset \notin \mathfrak{M}$, there is a $g \in \mathbf{P}$ f(i) (axiom of choice); then, $(g, I, \alpha) \in \Phi E$ and $\text{Lim}(g, I, \alpha)$ is nonempty, since (E, τ) is compact. In view of Proposition 2, $\text{lim inf}(f, I, \alpha)$ is nonempty; choose $x \in \text{lim inf}(f, I, \alpha)$. Then $\{x\} \in \mathfrak{M} \cap (\mathfrak{P} \text{ lim inf}(f, I, \alpha))$. By the choice of (f, I, α) , $(\mathfrak{M}, (\mathfrak{P}\tau)_{\mathfrak{M}})$ is proved to be compact. \square

While the proof of Proposition 4 can be carried over, word by word, to finitely additive quasitopological spaces (see Section 4), this is not the case for the proof of the next proposition:

Proposition 4'. Let $\mathfrak{M} \subseteq (\mathfrak{P}E) \setminus \{\emptyset\}$ and assume $\tau\{x\} \in \mathfrak{M}$ for all $x \in E$. Then, the subspace $(\mathfrak{M}, (\mathfrak{P}\tau)_{\mathfrak{M}})$ of $(\mathfrak{P}E, \mathfrak{P}\tau)$ is compact if and only if (E, τ) is compact.

PROOF. 1. In Part 1 of the preceding proof, replace $(\varkappa \circ f, I, \mathfrak{a})$ by $(\tau \circ \varkappa \circ f, I, \mathfrak{a})$ and the reference to Proposition 1 by that to Proposition 1'.

2. In Part 2 of the preceding proof, replace $\{x\}$ by $\tau\{x\}$. Use that $\liminf (f, I, \mathfrak{a})$ is closed there. \square

Remark. Proposition 4 contains the special case $\mathfrak{M} = \mathfrak{P}E \setminus \{\emptyset\}$. In this case, $(\mathfrak{M}, (\mathfrak{P}\tau)_{\mathfrak{M}})$ coincides (see [5]) with the hyperspace of lower semicontinuity of (E, τ) (see MICHAEL [7], p. 179, Definition 9.1 (" $\mathfrak{P}E \setminus \{\emptyset\}$ with the lower finite topology"), and (for "closure spaces") ČECH [1], p. 623, Definition 34 A.1). Proposition 4' contains the special case $\mathfrak{M} = 2^E$ (= set of all nonempty closed subsets of (E, τ)). In this case, $(\mathfrak{M}, (\mathfrak{P}\tau)_{\mathfrak{M}})$ coincides (see [5] or FLACHSMEYER [2], p. 326, 2.1, or POPPE [8]) with Michael's space 2^E endowed with the "lower finite topology" ([7], loc. cit.). While this special case of Proposition 4' occurs in the literature (with a different proof, using Alexander's Lemma (see FLACHSMEYER [2], p. 327, 2.4)), the author could not find a reference concerning the mentioned special case of Proposition 4.

In the paper [4], we have considered topological spaces (E, τ) , (F, σ) , (G, λ) , relations $R \subseteq E \times F$, $S \subseteq F \times G$ with $\Re R \subseteq \Im S$, and — respectively — the canonical mapping \widehat{R} , \widehat{S} , $\widehat{S} \circ \widehat{R}$ induced by R, S, $S \circ R$, which is a mapping from (in general not on!) (E, τ) , (F, σ) , (E, τ) into the power $(\mathfrak{P}F, \mathfrak{P}\sigma)$, $(\mathfrak{P}G, \mathfrak{P}\lambda)$, $(\mathfrak{P}G, \mathfrak{P}\lambda)$ of (F, σ) , (G, λ) , (G, λ) , as we do now for the following. We recall the validity of the logical diagram

$$\downarrow R \text{ and } S \text{ continuous} \Rightarrow \widehat{R} \text{ and } \widehat{S} \text{ continuous} \\
\downarrow S \circ R \text{ continuous} \Rightarrow \widehat{S \circ R} \text{ continuous}$$

and use Proposition 3 to reprove the right-hand arrow, more precisely, to reprove the next proposition (cf. Čech [1], p. 631, Theorem 34 B. 14, and [5]; furthermore, see [4], p. 41, Proposition 7):

Proposition 5. If \hat{R} is $(\tau, \mathfrak{P}\sigma)$ -continuous and \hat{S} is $(\sigma, \mathfrak{P}\lambda)$ -continuous, then $\widehat{S \circ R}$ is $(\tau, \mathfrak{P}\lambda)$ -continuous.

PROOF. Let $(f, I, \mathfrak{a}) \in \Phi(\mathcal{D}R)$ and $x \in (\mathcal{D}R) \cap \operatorname{Lim}_{\tau}(f, I, \mathfrak{a})$. Let $y \in (\widehat{S \circ R})(x)$ and $U \in \mathfrak{B}_{\lambda} y$. Then, there exists a $z \in F$ with $(x, z) \in R$ and $(z, y) \in S$. Since \hat{R} is $(\tau, \mathfrak{P}\sigma)$ -continuous, we have $\hat{R}(x) \subseteq \liminf_{\sigma} (\hat{R} \circ f, I, \mathfrak{a})$. Therefore, since $z \in \hat{R}(x)$, $z \in \lim \inf_{\sigma} (\hat{R} \circ f, I, \mathfrak{a})$. For abbreviation, we set $(\mathfrak{F}(\mathfrak{B}_{\sigma}z)) \otimes \mathfrak{a} = \mathfrak{c}$. By Proposition 3, there is a set $C \in \mathfrak{c}$ and a mapping $g \in \Pr_{(y, \hat{I}) \in C} (\hat{R} \circ f)(i)$ such that

(3)
$$z \in \operatorname{Lim}_{\sigma}(g, C, \mathfrak{c}_{C}).$$

Since $\Re R \subseteq \Im S$ (by supposition), one has $\Im (\widehat{S} \circ g) = C$ (in view of the choice of g). Because \widehat{S} is $(\sigma, \Re \lambda)$ -continuous, one obtains by (3)

(4)
$$\hat{S}(z) \subseteq \liminf_{\lambda} (\hat{S} \circ g, C, \mathfrak{c}_C).$$

Since $y \in \hat{S}(z)$ and $U \in \mathfrak{D}_{\lambda} y$, there exists, by (4), a set $D \in \mathfrak{c}_{\mathbb{C}}$ such that

(5)
$$U \cap ((\hat{S} \circ g)(V, i)) \neq \emptyset$$
 for all $(V, i) \in D$.

Because $\mathfrak{c}_C \subseteq \mathfrak{c}$, there are (by "Satz 13" in [3], p. 330) a set $W \in \mathfrak{V}_{\sigma} z$ and a family $(A_V)_{V \in \mathfrak{V}}$, where \mathfrak{V} denotes the set of all $V \in \mathfrak{V}_{\sigma} z$ with $V \subseteq W$, such that $A_V \in \mathfrak{a}$ for all $V \in \mathfrak{V}$ and S and S $A_V \subseteq D$. We set $A_W = J$ (for abbreviation) and choose a mapping $\chi \in \mathbf{P}_{I \in J} (U \cap ((\hat{S} \circ g)(W, i)))$ (use of (5) and the axiom of choice).

Let $i \in J$. Then, by the choice of g, $(f(i), g(W, i)) \in R$ and, by the choice of χ , $(g(W, i), \chi(i)) \in S$, thus $(f(i), \chi(i)) \in S \circ R$, therefore $\chi(i) \in (\widehat{S} \circ R)(f(i))$. On the other hand, we have $\chi(i) \in U$, thus, for all $i \in J$ (therefore, for α -almost all $i \in I$), $U \cap ((\widehat{S} \circ R)(f(i))) \neq \emptyset$. In view of the choice of U, we obtain

$$y \in \liminf_{\lambda} (\widehat{(S \circ R)} \circ f, I, \alpha).$$

We have proved that $\widehat{S \circ R}$ is $(\tau, \mathfrak{P}\lambda)$ -continuous. \square

4. Generalization. The Propositions 1, 2, 3, 4, 5 and their proofs remain valid if the topological spaces (E, τ) , (F, σ) , (G, λ) are replaced by general finitely additive quasitopological spaces (terminology: [5]) except for the following change within Proposition 3: Within (b), replace "There exists" by the words " $\mathfrak{B}x$ is a filter and there exists". Within (d), replace "There are" by the words " $\mathfrak{B}x$ is a filter and there are". — A quasitopological space (E, τ) is called to be compact if and only if $(\operatorname{Lim}_{\tau} \mathfrak{a} \neq \emptyset)$ for all ultrafilters \mathfrak{a} in E.

References

[1] E. ČECH, Topological spaces. Prague 1966.

[2] J. Flachsmeyer, Verschiedene Topologisierungen im Raum der abgeschlossenen Mengen. Math. Nachr. 26 (1963/64), 321—337.

[3] G. GRIMEISEN, Gefilterte Summation von Filtern und iterierte Grenzprozesse. I. Math. Ann. 141 (1960), 318—342.

[4] G. GRIMEISEN, Continuous relations. Math. Z. 127 (1972), 35-44.

[5] G. GRIMEISEN, The hyperspace of lower semicontinuity and the first power of a topological space Czechoslovak Math. J. 24 (99), (1974), 15—25.

[6] C. Kuratowksi, Topologie. Vol. I. Warszawa 1958.

[7] E. MICHAEL, Topologies on spaces of subsets. Transact. Amer. Math. Soc. 71 (1951), 152-182.

[8] H. Poppe, Der Limesraum der stetigen Konvergenz. Dissertation Universität Greifswald 1963.

PROF. GERHARD GRIMEISEN JAHNSTRASSE 28/1 7022 LEINFELDEN—ECHTERDINGEN 3 BRD

OFFICE ADRESS:

PROF. GERHARD GRIMEISEN MATHEMATISCHES INSTITUT A DER UNIVERSITÄT STUTTGART PFAFFENWALDRING 57 7000 STUTTGART 80 BRD

(Received September 8, 1976.)