Remarks on the limit inferior of a filtered set-family

By G. GRIMEISEN (Stuttgart)

It is well-known (see KURATOWSKI [6], p. 242) that in each metric space E the
limit inferior liminf 4, of each sequence (A4,) with AS E is the set of all xcE

n—-oa

such that there exist an n,(x)éN and a sequence (a,(x)) in E with a,(x)€ A4, for all
n=ny(x) and x=lim a,(x). In this paper, we give (in Proposition 3) a modified

generalization of this statement to a (general) topological space £ and the limit
inferior liminf(f, I, a) of a filtered family (f, 7, a) with f(/)S E for all icl.

For the remainder, let (E, 7) be a topological space, B, the neighborhood
operator, Lim, the limit operator, lim inf, the limit inferior induced by the topology
7. For abbreviation, we write just 8, Lim, lim inf instead of B,, Lim,, lim inf, if
no confusion can arise.

1. Terminology. In every respect we shall use the same terminology as used or
introduced in [4]. For nonempty sets / and K and filters a and b on 7 and K, respect-
ively, a®Db denotes the ordinal product of a and b (which is a filter on 7 X K) (see [3],
p. 330 and p. 336, Satz 23). Given a filter a on a set / and A€a, a, denotes the
trace of a in the set A; furthermore, if, for each i€/, a statement form H(i/) con-
taining i as a free variable is given, we say that H(i) holds *““for a-almost all ic/”
if and only if, for some A€a, H(i) holds for all i€ A. Given a mapping f and a set
B<S 2f, we denote the restriction of f to B by fz. Recall that, for each set M,
®M denotes the class of all filtered families in M. For each directed set (D, =), i.e.
for each set D with a reflexive and transitive relation = such that each finite subset
of D has an upper bound w.r. to =, we denote by §D the “filter of perfinality”
on D, which is defined to be the filter on D generated by the set {{z |y=z€eD}|yc D}.
Especially, for each x€E, (Bx, 2) is a directed set, and so §F(Bx) is the filter of
perfinality on Bux.

2. Connection between lim inf and Lim. The mapping lim inf is an extension of
the mapping Lim in the sense of

Proposition 1. Let x denote the mapping x—{x} on E into RE. Then
Lim (f, I, a) = liminf (xof, I, a)
holds for all (f, I, a)c PE.
Proor. Use of the definitions only. [J

While Proposition 1 remains true in general finitely additive quasitopological
spaces (see Section 4), this is not the case for the next proposition:
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Proposition 1°. In the notation of Proposition 1, one has:
Lim (f, I, a) = liminf (tox of, I, a)
holds for all ( f, I, a)c PE.

Proor. Use that, for each x€E, Bx is generated by the class of all open neigh-
borhoods of x; furthermore that f(i)et{f(i)} for all icl. O

One half of the statement on I|m mf A, in the introduction is still true in general
topological spaces:

Proposition 2. For all xcE and all (f, I, a)¢ ®(PE), the following statement
form (a) implies (b):

(@) There are an A€a and a gE P f(i) such that x€Lim (g, A, a,).

(b) x€lim inf (£, 7, a).

ProorF. Use of the definitions of Lim and lim inf in terms of B. O

The full generalization of the introductory remark on linm inf 4, is given by:

Proposition 3. For all xcE and all (f, 1, Q)¢ ®(RE), the following statement
forms (a) through (d) are equivalent:

(a) x€liminf (£, 1, a);

(b) There exists a mapping g on (Bx)XI into E with the following property:

gV, Def (i) for (F(Bx))@a)-almost all (V,i)e(Bx)X I and xeLim (g, (Bx) X1,
(F(Bx))@a).

(¢) is obtained from (b) by replacing the quantifier “for ((F(Bx))®a-almost all”
by “for {Bx}@a-almost all”.

(d) There are a CE(F(Bx))®a and a g€, ggc f(i) such that

x€Lim (g, C, (F(Bx))®@a)c).
Proor. First recall that

(D Lim (h, K, x) = Lim (hy, X, xy)

holds for each (&, K, x)é®PE and each X¢x. Let x€E and (f, I, a)¢ ®(BE). For
abbreviation we put Bx=D. Now we subdivide the proof.

1. By (1), (b) and (d) are equivalent.

2. Since DeFD, (c) implies (b).

3. We show that (a) implies (c). Suppose {a). Then, there is, for each V€D,
a set Ay €a such that

2) VO f(i) #0 for all icAd,y.

Let (4y)y ¢ p be a family of such sets 4, (use of the axiom of choice) and B the direct
sum v?n Ay of the sets Ay (see [3], p. 325). Then (by (2)) there exists a xE(V Ii;“ VOf(i)

(use of the axiom of choice). Define a mapping g on DX/ into E by letting

¢V, i) forall (V,i)eB,

gV, i) = {x for all (¥, )E(DXD\B.



Remarks on the limit inferior of a filtered set-family 3

Since B¢ {D}®a, we have
g(V,i)ef(i) for {D}®a-almost all (V,i)cDXL
Let WeD. Then, by the definition of g,
g DeEVNf@O SWNfHSW

holds for all (V,i) with VS W, VeD and i€ A4,, thus for (FD)®a-almost all
(V,i)eDXI. By the choice of W, we obtain xcLim (g, DX/, (§D)®a). There-
fore, (c) holds.

4. We show that (b) implies (a). Suppose (b). Let V€ D. Then, with the mapping
g taken from (b), g(W, i)€V N f(i) holds for (FD)®@a-almost all (W, i)e DI (con-
sider that (FD)®a is a filter). Therefore, by the definition of §D and of ® (use of
[3], p. 330, Satz 13), there exists a set U€ D and, for each WeD with WZU, a set
Ay €a such that

gW, eV f(i) for all icAy,.

Especially, we have V(N f(i)=0 for all i€ A,. By the choice of V, we obtain (a). O

3. Applications of the preceding propositions. It would be desirable to regain
“nice” properties of certain subspaces of (BE, Pr) (the power of (E, 7)) from
corresponding or related properties of (E, t), or conversely, by means of the pre-
ceding propositions. A simple step in the desired direction can be seen in the next
proposition.

Proposition 4. Let M S (PE)\ {0} and assume {x}cM for all x€E. Then, the
subspace (M, (Pt)w) of (PE, R1) is compact if and only if (E, ©) is compact.

PROOF. . Assume (I, ($1)y) to be compact. Let (f, 7, a)¢ PE with an ultra-
filter a. In the terminology within Proposition 1, one has M (P lim inf (x of, 7, a)) =0,
since (M, (Pr)y) is compact. Therefore, there is an MecIM  with
MCliminf (x of, I, a)=Lim ( f, I, a) (use of Proposition 1), thus (since M #0) Lim
(f, I, a)#0. Therefore, by the choice of (f, 7, a), (E, t) is compact.

2. Assume that (E, 1) is compact. Let (f, /, a)€ @M with an ultrafilter a. Since
D¢ M, there is a gEI_E’_r f(i) (axiom of choice): then, (g, I, a)¢ ®E and Lim (g, /, a)
is nonempty, since (£, 1) is compact. In view of Proposition 2, lim inf (f, I, a)
is nonempty; choose x€lim inf (£, 7, a). Then {x}¢MN(P lim inf (£, 7, a)). By the
choice of (f, I, a), (M, (Pr)g) is proved to be compact. [

While the proof of Proposition 4 can be carried over, word by word, to finitely

additive quasitopological spaces (see Section 4), this is not the case for the proof
of the next proposition:

Proposition 4’. Let M (REN{0} and assume t{x}cM for all xcE. Then,
the subspace (M, (Pr)g) of (VE, Bt) is compact if and only if (E, 1) is compact.

PRrOOF. 1. In Part 1 of the preceding proof, replace (% of, I, a) by (tox of, I, a)
and the reference to Proposition 1 by that to Proposition 1°.

2. In Part 2 of the preceding proof, replace {x} by 7 {x}. Use that lim inf ( £, 7, a)
is closed there. [J
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Remark. Proposition 4 contains the special case IM=PEN\ {0}. In this case,
FJJL (P1)g) coincides (see [5]) with the hyperspace of lower semicontinuity of (E, 7)
see MICHAEL [7], p. 179, Definition 9.1 (““BE\ {0} with the lower finite topology™),
and (for “closure spaces””) Cecu [1], p. 623, Definition 34 A.1). Proposition 4’
contains the special case 9MM=2F (= set of all nonempty closed subsets of (E, 1)).
In this case, (M, (Pr)y) coincides (see [5] or FLACHSMEYER [2], p. 326, 2.1, or POPPE
[8]) with Michael’s space 2F endowed with the “lower finite topology” ([7], loc. cit.).
While this special case of Proposition 4’ occurs in the literature (with a different
proof, using Alexander’s Lemma (see FLACHSMEYER [2], p. 327, 2.4)), the author
could not find a reference concerning the mentioned special case of Proposition 4.

In the paper [4], we have considered topological spaces (E, 1), (F, o), (G, 4),
relations RC EXF, SC FXG with ZRC S, and — respectively — the canonical

mapping R, S, S/o:ﬁ induced by R, S, ScR, which is a mapping from (in general
not on!) (E, 1), (F,0), (E,t) into the power (BF, Vo), (BG, V), (PG, Pi) of
(F, o), (G, 1), (G, 2), as we do now for the following. We recall the validity of the
logical diagram

R and S continuous = R and § continuous

- A -
SoR continuous = S o R continuous

and use Proposition 3 to reprove the right-hand arrow, more precisely, to reprove
the next proposition (cf. CecH [1], p. 631, Theorem 34 B. 14, and [5]; furthermore,
see [4], p. 41, Proposition 7):

Proposition 5. If R is (z, Po)-continuous and S is (o, BA)-continuous, then
T
SoR is (t, PA)-continuous.

A
Proor. Let (f, 1, a)e ®(ZR) and x€(ZR)NLim,(f, I, a). Let y€(SoR)(x)
and U€ DB, y. Then, there exists a z€ F with (x, z)€R and (z, y)€ S. Since R is (t, Ro)-
continuous, we have R(x)Sliminf, (Rof, I, a). Therefore, since z€R(x), z€
climinf, (R of, I, a). For abbreviation, we set (g (%,z))@azc. By Proposition

3, there is a set C€c and a mapping gé(y %’EC( of)(i) such that

3) zeLim, (g, C, ¢co).

Since ZR < 2 (by supposition), one has Z2(Sog)=C (in view of the choice of g).
Because S is (o, PA)-continuous, one obtains by (3)

(4) S(z) € liminf;, (Sog, C, ¢o).
Since y€S(z) and U€B,y, there exists, by (4), a set Décc such that
(5) UN(Sog)(V,i)) #0 for all (V,i)eD.

Because c¢-C¢, there are (by ““Satz 13” in [3], p. 330) a set We B,z and a family
(Ay)yey, where B denotes the set of all V€B,z with V'S W, such that Ay€a for
all ¥¢®B and VS Ay S D. We set A, =J (for abbreviation) and choose a mapping

ZG;E; NS o;r)u(m i))) (use of (5) and the axiom of choice).
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Let i€J. Then, by the choice of g, (f(i), g(W,i))éR and, by the choice of

1 (g(W, i), x(D)ES, thus (f(i), x(i))€ SoR, therefore x(f)G(Sﬁ)(f(i)). On the
other hand, we have y(i)€U, thus, for all i€J (therefore, for a-almost all i€]),

U ﬂ((S?ﬁ)( f(i))#0. In view of the choice of U, we obtain
yelim inf, (SO R) of, I, a).

We have proved that ﬁ is (7, ‘BA)-continuous. [

4. Generalization. The Propositions 1, 2, 3, 4, 5 and their proofs remain valid
if the topological spaces (E, 1), (F, 0), (G, A) are replaced by general finitely additive
quasitopological spaces (terminology: [5]) except for the following change within
Proposition 3: Within (b), replace “There exists” by the words “®Bx is a filter and
there exists”. Within (d), replace “There are” by the words “Bx is a filter and
there are”. — A quasitopological space (E, 1) is called to be compact if and only if
(Lim, a =0 for all ultrafilters a in E.
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