Concrete radicals in general modules

B. de la ROS A*) (Bloemfontein)

§ 1. Introduction

Let A be an associative ring, (without any assumptions on commutativity or
the existence of a unity element), and denote by ,# the category of all left
A-modules. For this category we take over the concept of a radical as it is employed
in torsion theory for unitary modules over a ring with unity element; (see e.g. [6]).
We define: 4 preradical of 4# is a functor r: ,# - # such that for all M, N¢ ,#,

(i) M—r(M), a submodule of M;
(ii) (f€ HomA(M, N)) —r(f)=flr,€Hom, (r(M), r(N)).

A preradical r is said to be idempotent if r(r(M)):-r(M) for all M€ ,.#, and r is
called a radical if r(M/r(M))=0 for all M¢  #. If ris a radical the submo-
dule r(M) is called the r-radical of the module M, and M is said to be r-radical
(r-semisimple), if r(M)=M, (r(M)=0).

Our purpose is to construct a class of radicals of this type and to produce
a few concrete examples of such radicals.

§ 2. Radicals of ,.# defined by intersections

The basic tool in our construction is the well known one used in the theory
of radicals in rings, namely taking intersections. Some terminology will be necessary:
We consider a property X of submodules which defines within each module M€ , #
a subsystem X,, of submodules, called the X-submodules of M. For a given X the
system X,, may be empty, e.g. when the Z-submodules are defined to be the maximal
submodules. A defining property as described above will be called an isolator.

2.1 Definition. An isolator X is said to be stable on ,# if for each A-epimor-
phism f: M — N the assignment P f(P) defines a bijection between {P¢ X\, |Ker fc P}
and XZy.

A direct consequence of this definition is that S€ZX), if and only if 02, .

2.2 Definition. A transferring isolator X is one which satisfies the following
condition: If M¢ .#, T a submodule of M and S€ZXZ,, then TNS=T implies
that TN SeZ;.
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With each stable transferring isolator ¥ we now associate the assignment
r: M= M, M—r(M) and (f: M—=N)—r(f)=fl,n: r(M)—~N; where we define
riM)= (1 § if Zy#0 and r(M)=M if XZ,=0. We show that this assign-
S€Xy
ment defines a radical of ..

2.3 Lemma. If Mc  # and T is a submodule of M, then r(T)CT(\r(M).

Proor. If either Xy =0 or TcS for all S€ZX,,, there is nothing to prove. If
TNS=T for at least one ScZ,, then TNSeZ; and hence r(T)=
=N Kc N (TNSH=TN( N S)=TNr(M).

KeXp 8E3, S€Zy

2.4 Theorem. r is a radical of 4, i.e. every A-homomorphism f: M—-N in-

duces r(M)-—r(N) by restriction and r(M[r(M))=0 for all M€ M.

Proor. To prove the first part of the theorem we consider an arbitrary A-homo-
morphism f: M—~N. We need obviously only consider the case where r(N)=N.
If r(M)=M, then the stableness of X shows that r(Imf)=Imf. Since now
Imfcr(N), by 2.3, we have that r(M)—r(N). If r(M)=M we consider the set
{S,€ X\ | Ker fc S,}, which is non-empty since r(N)#=N. Now

frn)cf(N S)= N (S = rdmf)cImfNr(N)< r(N).

Hence r(M)-r(N) in this case also.

Concerning the second part of the theorem we may clearly confine ourselves
to modules M€ ,# with 0=r(M)=M. Now considering the canonical projection
M—-M[r(M) we have the bijection Zy<rZy,n, KgrKy/r(M). So if
x+r(M)er(M/r(M)) then x+r(M)eKy/r(M) for all B so that xcK, for all B.
Hence x€r(M), or equivalently, x+4r(M)=0. This completes the proof.

As an immediate consequence of the construction of r(M) we also have the
following criterion.

2.5 Corollary. A non-zero module M in 44 is isomorphic to a subdirect product
of all modules M|S, (S€Zy), if and only if r(M)=0.

§ 3. Concrete radicals in ,.#

In view of theorem 2.4 we may now substitute different stable transferring
isolators for X to obtain concrete examples of radicals of ,.#. Our basic isolator
(which we shall denote by 2') is defined as follows:

3.1 Definition. A submodule S of a module M€ .. shall be called a Z'-sub-
module of M if xé M and Axc S imply that x€S.

3.2 Lemma. X' is a stable transferring isolator.

PRrROOF. Let f: M—N be an A-epimorphism and let P¢< X}, such that Ker fc P.
Let Ancf(P) and m a fixed element of M with f(m)=n. Then Af(m)cf(P)
implies that f(am)cf(P) for all ac 4. Hence for each ac A there is a p,€P such
that f(am—p,)=0 so that am—p,€Ker fcP. This shows that AmcP. Since
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Pe X}, we must have that meé P and consequently n€f(P). Hence f(P)eZ). On
the other hand, if Q¢ X}, then Am, cf~*(Q) implies that Af (m,)< Q so that f(m,)eQ
and hence m,€f~'(Q). Thus we have that f~'(Q)€ZX},. From the identity
f(f1(Q)=Q for all QcI} we obtain the surjectivity of the mapping
{Pe Z},|Ker fCc P}+Z}, P—f(P). The injectivity follows from equally well known
elementary arguments. Thus the stableness of X! is established. That this isolator
also has the transferring property is a direct consequence of its definition.

The following properties of X' relative to an arbitrary M€ ,# are stated for
reference; the verifications are straightforward.

3.3 Lemma. (i) 2}, is closed under intersections. (ii) If P, Q and R are submodules
of M such that PE€X}, and Q€ Xy, then PEXy. (iii) If S is a submodule of M and
S={xeM|Axc S}, then S€X}, if and only if S=S.

We now consider the radical r; associated with 2Z'. Let M€ #. Then 3.3
(i) shows that ry(M)=0 if and only if 0€Z},. Consequently, the subdirect de-
composition of an r,-semisimple module according to 2.5 is a trivial representa-
tion. Next we observe that ry is idempotent. For if r,(r;(M))Sr,(M) for some
M¢ 44, then there is a QSr (M) in X} . Since r(M)EX} by 3.3 (i), the
property 3.3 (ii) shows that Q¢ X2},. This contradicts the definition of r,(M).

Finally in connection with r, we characterize r,(M) under various conditions,
mainly on the ground ring A. First we note that the submodules

M, = {xéeM|A"x = 0},

n€N, are all contained in r, (M), for xé M, implies that 4"x=0 so that A"x<r,(M).
This shows that A(a’x)cr,(M) for all a’¢ A" so that A" 'xcr,(M), because
ri(M)eZ},. Continuing this process, we eventually obtain Axcr,(M) and then
x€ry(M). Since clearly M,c M, ., for all n¢N we have an ascending chain

(1) S M L)

in which M;={xéM|Ax=0} is the maximal trivial submodule of M.
3.4 Corollary. If there is an neN with A"=A""'=..., then r,(M)=M,.

Proor. If AxcM, then A"(ax)=0 for all ac 4. Hence A"*'x=0 so that
A"x=0, or equivalently xé M,. Thus we have that M,cZX}, which together with
M,cr,(M) show that r(M)=M,. In particular, if 4 is left or right artinian
there exists an ne¢ N such that r,(M)=M,, and if 4 is idempotent then r,(M)=M,.
Apart from conditions on 4 we note that the chain (1) may also be employed in
the same direct manner as in 3.4 to derive the following characterization.

3.5 Corollary. If M is noetherian, then ry(M)=M, for some ncN.

Returning to our arbitrary M€ ,.# we assume for the moment that A has a unity
element e¢. Then 3.4 shows that r,(M)=M,. Furthermore, if A: A—End' (M)
is the ring homomorphism which supplies the module structure of M and if we
identify A(e) with e, we note that the submodule E={ex—x|xc M} is contained
in M,=r,(M), because a(ex—x)=0 for all ac 4. However, EcX},, for AycE
implies that ey E so that yc E. Hence we have that r,(M)=M,=E. Using the
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characterization r\(M)=M,; we see that r,-radicality is equivalent with triviality,
while the characterization r,(M)=E establishes the equivalence between r,-semi-
simplicity and unitariness.

Once again we let 4 be an arbitrary ring and we now consider the Z'-maximal
submodules of an arbitrary module M€ ,.#; these submodules will be termed the
XZ2-submodules of M. It is obvious that Z*c X', and the restriction of P~—f(P) in
the proof of 3.2 to {PcIX}|Ker fcP} immediately yields the stableness of X2.
Moreover, if T is a submodule of M and L€ X}, a direct application of the defini-
tion of X' shows that TNL=T implies that T LEZY. The relation TN LEZE
now follows from T/(TNL)==(T+L)/L=M]|L, which is a simple module. Hence
we have shown that 22 is a stable transferring isolator, and we may consider the
radical r, associated with it. First we observe that for every unitary Z-module
(abelian group) M, ry(M)=®(M), the Frattini submodule of M, and hence that
r, is not idempotent. The latter observation immediately yields the expected fact
that r,>r,. We shall employ the radical r, to fit into our scheme a well known
module radical:

3.6 Theorem. The radical r, coincides with the Kertész radical.

Remark. The Kertész radical, which we shall denote by k, is discussed in [2; 3).
For an arbitrary M€ # it is defined by k(M)={xeM|Axc ®(M)}. Using the
easily verifiable fact that L€ X3, if and only if M/L is irreducible, we note that our
theorem is already partially covered in [2; 3], where modules which are not
k-radical are being characterized. We give here a complete proof within the frame-
work of our approach.

Proor. If M has no maximal submodules, then also X3,=0, so that r,(M)=
=k(M)=M. In the other alternative we consider the set {L |y€C} of all maximal
submodules of M and the corresponding set {E [yeC}. (See 3.3.) For each yeC
we have that L, is a submodule of M, that L, c L, C M and hence (by the maximality
of L) that L,=L, or L,=M. Since rEk(M) 1f and only if AxcL, for all y, and
since the latter condmon lS equivalent with x€ L' for all y, we have that

(2) k(M) = ﬂ L,

Furthermore, 3.3 (iii) shows that L €ZX}, if and only if L ,=L,. Hence if L =M
for all y, then X}=0 and, applymg (2), we obtain rz(M)_M ﬂ[ k(M)

On the other hand, if at least one L, #M, ie. L,=L,, then the rcdundancy of
the (possible) M’s in () L, in (2) shows that k(M)= ﬂ L=ry,(M). This com-
pletes the proof. y Lexy

Our final application of theorem 2.4 is the construction of one more radical
based on a concept of ‘modularity’ of maximal submodules in the following sense.

3.7 Definition. A maximal submodule L of a module M¢ ,# is called a Z*-
submodule of M if there exists an a€ A such that ax—x€L for all xé M.

It easily follows that X3}, X3, and if A has a unity element e, the reverse in-
clusion also holds; for in this case, if L€ X3, we have that ex—x¢€r,(M)cL for all
x€M. Thus we have:
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3.8 Lemma. For each M€  M: (i) 2}, 23, <X (ii) if A has a unity element
then Iy =x%.

The validity of the following auxilliary result may also be checked directly.
3.9 Lemma. 2* is a stable transferring isolator on M.

Denoting the radical associated with Z* by r3 we may state the following im-
mediate consequence of lemma 3.8.

3.10 Corollary. For each Mc  #: (i) ry(M)Cry(M)CrytM); (ii) if A has
a unity element then ry(M)=rg(M).

Regarding the second part of this corollary we note that in the case of a unitary
left A-module M the radicals r, and r; coincide with the radical usually employed
in this case, namely @(M). This also shows that r, is not idempotent.

For an arbitrary M¢ ,.#, (A arbitrary), the stableness of X has the implication
that L€ X}, if and only if 0€X},,,. This means that for L€ X}, the factor module
ML has a ‘quasi-unitary’ property in the sense that there is an a€A4 such that
a(x+L)=x+L for all x+LeM/L. Since L is maximal we have the additional
property that M/L is irreducible. Calling a module N¢ ,# quasi-unitary if there
exists an element ac A4 with ax=x for all xé N, we have the following result in
view of 2.5.

3.11 Corollary. A non-zero module M in ,4# is isomorphic to a subdirect pro-
duct of quasi-unitary irreducible modules in ,# if and only if rs(M)=0.

We observe that if 4 has a unity element, the r;-semisimple modules, (i=1, 2, 3),
are in fact unitary, for r(M)=0 implies that M=M[r,(M)=M[r,(M)=AM.
Finally in this section we must mention that the exact relationship between r, and
ry has not yet been settled. The probability seems to weigh in the direction of
a difference.

§ 4. The module radicals r; of ,.# confined to the ground ring 4

We conclude our discussion by comparing the module radicals r,(A4), (i=1, 2, 3),
with ring radicals of 4. The Baer lower radical #, the Jacobson radical J and the
Brown—McCoy radical B were the best known candidates for this purpose.

4.1 Theorem. For every associative ring A: (i) ri(A)cB(A), (ii) (reA)SJ(A),
(iii) rg(A)c B(A).

Proor. We need only prove (i) and (iii) since (ii) has already been established
in[3, 7]. (i) Let P be a prime ideal of A and let x€ A with Axc P. Each element of the
ideal product 4(x) may be written as a finite sum of elements of the form ax-+
+Xa;xa;, where a, a;, ai€¢A. Since Axc P we therefore have that A(x)cP and
since P is a prime ideal we obtain x¢€P. This shows that P¢Z), and we may con-
clude that r,(A4)cf(A). (iii) Clearly, every modular maximal ideal of 4, (cf. [5]),
belongs to Z%. Hence r3(4)c B(A). This completes the proof.
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In the case where A4 has a unity element it was already noted that ry(M)=ry(M)
for all M¢ ,.#. Considering the module A€ ,# in this case, we observe that X%
and 2% coincide with the set of modular maximal left ideals of A4, so that ry(4)=
=ry(A)=J(A). If A is a commutative ring (with or without unity element), we
know that J(A)=B(A). Moreover, the modular maximal ideals of 4 are exactly
the Z3-ideals of A. Finally in this case, if LeZ%, then A*¢ L and hence a result in
[4] ensures the modularity of L. Thus if 4 is a commutative ring we have that ry(4)=
=ry(A)=J(A)=B(A).

Concerning r, no positive results are ensured by either of the above mentioned
‘natural’ conditions on A. If A has a unity element then r,(4)=0, and in the case
of commutative rings the Zassenhaus example 4 mentioned in [1], p. 20, supplies
a counter example. Here pf(4)=A, while A?=A4 shows that r,(4)=A4,#A.
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