Solution of a problem of B. de la Rosa

By L. C. A. van LEEUWEN (Groningen)

1. Introduction

In a previous paper [1] B. DE LA ROSA has introduced the radicals r_1 , r_2 and r_3 for general left A-modules, where A is an associative ring, without any assumptions on commutativity or the existence of a unity element. For the definitions of these radicals and other concepts we refer to his paper. B. de la Rosa conjectures that, in general, $r_2 \neq r_3$. The purpose of this paper is to show that this is indeed the case.

2. Construction of the ring A

In order to prove that $r_2 \neq r_3$, we use a ring A, such that $r_2(A) \neq A$ but $r_3(A) = A$. The ring A is constructed similarly as the Ω -ring A used by F. A. Szász [2]. Let K be a field and Γ be an index set, where $|\Gamma| \cong \aleph_0$. A is an algebra over K with the basic elements a_{α} , $r_{\beta\gamma}$, $s_{\epsilon\eta\vartheta}(\alpha, \beta, \gamma, \epsilon, \eta, \vartheta \in \Gamma)$. Any element a in A has the form

$$(*) a = \sum_{i} \pi_i a_{\alpha_i} + \sum_{i,j} e_{ij} r_{\alpha_i \beta_j} + \sum_{i,j,k} \sigma_{ijk} s_{\alpha_i \beta_j \gamma_k},$$

where π_i , ϱ_{ij} , $\sigma_{ijk} \in K$ and all three sums Σ^* are finite.

The multiplication of the basic elements is defined according to the tabel

	a_{ε}	$r_{\varepsilon\eta}$	$S_{\varepsilon\eta\vartheta}$
a_{α}	a_{α}	$S_{\alpha \epsilon \eta}$	$S_{\alpha\eta\vartheta}$
$r_{\alpha\beta}$	$\delta_{\beta\varepsilon} a_{\alpha}$	$\delta_{\beta\varepsilon}r_{\alpha\eta}$	$\delta_{\beta\varepsilon}s_{\alpha\eta\vartheta}$
$S_{\alpha\beta\gamma}$	$\delta_{\gamma\varepsilon}a_{\alpha}$	$\delta_{\gamma\varepsilon} s_{\alpha\beta\eta}$	$\delta_{\gamma \varepsilon} s_{\alpha \eta \vartheta}$

where $\delta_{\alpha\beta}$ is the Kronecker symbol.

Because of the multiplication table one can show that the multiplication in A is associative. Let L be the subalgebra of A, generated by all elements $r_{\beta\gamma}$, $s_{\epsilon\eta3}$. Without the operator set K, we get that A is an associative ring and L is a left ideal in A.

The left A-modules are the left ideals in A, so L is a left A-module. First we show that L a Σ^1 -submodule of A is, i.e. if $x \in A$ and $Ax \subset L$, then $x \in L$ (cf. [1], definition

3.1). Let $Ax \subset L$ for an element $x \in A$ and suppose that $x \notin L$. Then, in the representation (*) of x, at least one of the π_i is $\neq 0$ $(\pi_i \in K)$. It follows that $(\pi_i^{-1} r_{\beta x_i}) x =$ $=a_{\beta}+i'$ and, since $Ax\subset L$, $a_{\beta}+i'\in L$. Hence $a_{\beta}\in L$, which is impossible. So $x\in L$ and L is a Σ^1 -submodule of A: $L \in \Sigma^1_A$. Next we prove that L is a Σ^1 -maximal submodule of A, i.e. a Σ^2 -submodule of A. In fact we show that L is a maximal left ideal in A. Let $a \notin L$, then we prove that La+L=A. This shows that the left ideal in A, generated by L and a, is A. Since $a \notin L$, there exists an element $\pi_i \neq 0$, $\pi_i \in K$, in the representation (*) of a. Take an arbitrary element $\beta \in \Gamma$ and an arbitrary element $e \in K$. Then $\pi_i^{-1} e^r \beta \alpha_i a = e a_\beta + l''$, $l'' \in L$, or $e a_\beta = \pi_i^{-1} e^r \beta \alpha_i a - l'' \in La + L$. So any element of A belongs to La + L or A = La + L. Then L is element a Σ^2 -submodule of A or $L \in \Sigma_A^2$.

Since $r_2(A) = \bigcap_{S \in \Sigma_A^2} S$ if $\widehat{\Sigma}_A^2 \neq \emptyset$, we get that $r_2(A) \subseteq L$ and $r_2(A) \neq A$.

A maximal left ideal L of the ring A is a Σ^3 -submodule of A if there exists an $a \in A$ such that $ax - x \in L$ for all $x \in A$. Now we show that L is not a Σ^3 -submodule of A or that $L \notin \Sigma_A^3$.

Suppose then that there exists an element $a \in A$ such that $ax - x \in L$ for all $x \in A$.

Then $y(ax-x) \in L$ for all $x, y \in A$ or $[y(a-1)]x \in L$ for all $x, y \in A$. a) If $a \in L$ then $a = \sum_{i,j}^* e_{ij} r_{\alpha_i \beta_j} + \sum_{i,j,k}^* \sigma_{ijk} s_{\alpha_i \beta_j \gamma_k}$. Since $\sum_{i,j}^*$ and $\sum_{i,j,k}^*$ are finite sums and $|\Gamma|$ is infinite, there exists an index $\varepsilon \in \Gamma$ such that $\varepsilon \neq \beta_j$, $\varepsilon \neq \gamma_k$ for all β_j , γ_k in the representation of a. Hence

$$aa_{\varepsilon} = \sum_{i,j}^{*} e_{ij} \delta_{\beta_{j}\varepsilon} a_{\alpha_{i}} + \sum_{i,j,k}^{*} \sigma_{ijk} \delta_{\gamma_{k}\varepsilon} a_{\alpha_{i}} = 0,$$

so $aa_{\varepsilon} - a_{\varepsilon} = -a_{\varepsilon} \in L$. Contradiction.

b) If $a \in L$ then there exists an element $\pi_i \in K$, $\pi_i \neq 0$ in the representation of a. Choose $y = \pi_i^{-1} r_{\beta \alpha_i}$ in A, then $y(a-1) = a_{\beta} + l$, $l \in L$. Therefore $(a_{\beta} + l) x \in L$ for all $x \in A$. As $l \in L$, one can find, exactly as in case (a), an index $\varepsilon \in \Gamma$ such that $la_{\varepsilon} = 0$.

Then $(a_{\beta}+l)a_{\varepsilon}=a_{\beta}\in L$, which is a contradiction. So $L\notin \Sigma_A^3$.

This last result enables us to show that $\Sigma_A^3 = \emptyset$. Suppose, on the contrary, that $L' \in \Sigma_A^3$ i.e. L' is a maximal left ideal in A and there exists an element $a \in A$ such that $ax-x\in L'$ for all $x\in A$. Let a have the representation (*). Since $|\Gamma|$ is infinite and all sums Σ^* , occurring in the representation (*), are finite, we can choose

an index $\varepsilon \in \Gamma$ such that $\varepsilon \neq \alpha_i$, $\varepsilon \neq \beta_j$ and $\varepsilon \neq \gamma_k$ for any choice of α_i , β_j or γ_k in (*). Take $x = r_{\varepsilon \eta}$ in A (η is arbitrary in Γ). Then $ar_{\varepsilon \eta} - r_{\varepsilon \eta} \in L'$. Also $(\sum_{i,j}^* e_{ij} r_{\alpha_i \beta_j}) r_{\varepsilon \eta} = \sum_{i,j}^* e_{ij} r_{\alpha_i \beta_j} r_{\varepsilon \eta} = \sum_{i,j}^* e_{ij} \delta_{\beta_j \varepsilon} r_{\alpha_i \eta} = 0$. Similarly $(\sum_{i,j,k}^* \sigma_{ijk} s_{\alpha_i \beta_j \gamma_k}) r_{\varepsilon \eta} = 0$. And $(\sum_{i}^{*} \pi_{i} a_{\alpha_{i}}) r_{e\eta} = \sum_{i}^{*} \pi_{i} a_{\alpha_{i}} r_{e\eta} = \sum_{i}^{*} \pi_{i} s_{\alpha_{i} e\eta}$. Hence $a r_{e\eta} - r_{e\eta} \in L'$ implies that $-r_{e\eta}+\sum^*\pi_{\iota}s_{\alpha_{\iota}e\eta}\in L'$ for all $\eta\in\Gamma$. Then take $r_{\lambda e}$, where λ is arbitrarily chosen (in Γ). It follows that

$$(r_{\lambda \epsilon}) \left(-r_{\epsilon \eta} + \sum_{i}^{*} \pi_{i} s_{\alpha_{i} \epsilon \eta} \right) = -r_{\lambda \eta} + \sum_{i}^{*} \pi_{i} r_{\lambda \epsilon} s_{\alpha_{i} \epsilon \eta} = -r_{\lambda \eta} \in L' \quad \text{for all} \quad \lambda, \, \eta \in \Gamma.$$

Hence $r_{\lambda\eta} \in L'$ for all $\lambda, \eta \in \Gamma$.

Now choose $x = s_{\varepsilon\mu\vartheta}$, then $as_{\varepsilon\mu\vartheta} - s_{\varepsilon\mu\vartheta} \in L'$. Using the representation (*) of a and proceeding as above, one gets that $-s_{\varepsilon\mu\vartheta} + \sum_{i} \pi_{i} s_{\alpha_{i}\mu_{\vartheta}} \in L'$ for all $\mu, \vartheta \in \Gamma$.

Hence $(r_{v\varepsilon})(-s_{\varepsilon\mu\vartheta}+\sum_{i}*\pi_{i}a_{\alpha_{i}\mu\vartheta})=-s_{v\mu\vartheta}\in L'$ for all $v,\mu,\vartheta\in\Gamma$. So $s_{v\mu\vartheta}\in L'$ for all $v, \mu, \theta \in \Gamma$, Then the subalgebra of A, generated by all $r_{\beta\gamma}, s_{\epsilon\eta\theta}$, belongs to L', i.e. $L \subseteq L'$. However L, L' are maximal left ideals, so L = L'. Then $L \in \Sigma_A^3$, which is a contradiction. This shows that $L' \in \Sigma_A^3$ does not exists, so $\Sigma_A^3 = \emptyset$. By definition, $r_3(A) = A$ ([1], definition 2.2). We have seen that $r_2(A) \neq A$, so, in general, $r_2 \neq r_3$.

Literature

 B. DE LA ROSA, Concrete radicals in general modules.
F. A. Szász, Lösung eines Problems bezüglich einer Charakterisierung des Jacobsonschen Radikals, Acta Math. Acad. Sci. Hung. 18 (3-4), (1967), 261-272.

(Received September 28, 1976.)