On entire functions of slow growth

By P. BUNDSCHUH (Köln)

1. Introduction. If f(z) is an entire function and $M(r, f) := \max_{|z|=r} |f(z)|$, then $\varrho_{cl}(f) := \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r}$ is called the *(classical) order* of f. If $0 < \varrho_{cl}(f) < \infty$ then one introduces further $\sigma_{cl}(f) := \limsup_{r \to \infty} \frac{\log M(r, f)}{r^{\varrho_{cl}(f)}}$ and denotes $\sigma_{cl}(f)$ by the *(classical) type* of f. In the theory of entire functions it is well known how $\varrho_{cl}(f)$ and $\sigma_{cl}(f)$ can be expressed by the coefficients a_n of the Taylor series $\sum a_n z^n$ of f.

In their interesting note [3] P. K. JAIN and V. D. CHUGH introduced a logarithmic

order $\varrho(f)$ for entire functions f by

(1)
$$\varrho(f) := \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log \log r}$$

and proved the analogues of some classical results on entire functions. It is clear that $\varrho(f)=0$, if f is constant, and $\varrho(f)\ge 1$ otherwise. Especially if f is a non-constant polynomial, then we have $\varrho(f)=1$; but there are also entire transcendental functions f with $\varrho(f)=1$. For nonconstant entire functions f with $\varrho(f)<\infty$ we introduce further the notion of *logarithmic type* $\sigma(f)$ by f

(2)
$$\sigma(f) := \limsup_{r \to \infty} \frac{\log M(r, f)}{(\log r)^{\varrho(f)}};$$

one can ask how ϱ and σ are expressed by the a_n 's. This was recently answered by Miss E. Josko [4]; concerning ϱ there is already a result of S. M. Shah and M. Ishao [5].

Here we treat these questions more generally giving a connection between ϱ , σ and the coefficients of certain interpolation series for f(z). Such formulas have applications in other mathematical topics, e.g. in Diophantine Approximations (see [1], [2]).

2. Interpolation series. Let $\{z_j\}_{j=1,2,...}$ be an infinite sequence of complex numbers and f(z) an entire function. If we define polynomials $P_k(z)$ by

(3)
$$P_0(z) := 1, \quad P_k(z) := \prod_{j=1}^k (z - z_j) \quad (k \ge 1)$$

¹⁾ We write only M(r), ϱ , σ instead of M(r, f), $\varrho(f)$, $\sigma(f)$ if there is no risk of confusion.

and $A_0, A_1, ...; R_n(z)$ by

(4a)
$$A_k := \frac{1}{2\pi i} \int_{C_{k+1}} \frac{f(\zeta) d\zeta}{P_{k+1}(\zeta)};$$
 (4b) $R_n(z) := P_n(z) \frac{1}{2\pi i} \int_{C_{n,z}} \frac{f(\zeta) d\zeta}{(\zeta - z) P_n(\zeta)}$

then we have

$$f(z) = \sum_{k=0}^{n-1} A_k P_k(z) + R_n(z) \quad (n \ge 0).$$

 C_k resp. $C_{n,z}$ in (4a) resp. (4b) can be chosen as cercles around $\zeta=0$ containing z_1, \ldots, z_k resp. z_1, \ldots, z_n ; z.

For transcendental f the following Theorem 1 gives sufficient conditions on the sequence $\{z_j\}$ which guarantee $R_n(z) \to 0$ with $n \to \infty$ for every complex z. If these conditions are satisfied, f(z) can be represented by the series $\sum_{k=0}^{\infty} A_k P_k(z)$ in the whole complex plane. If one has any representation $\sum_{k=0}^{\infty} B_k P_k(z)$ for f(z), valid in the whole complex plane, then it follows that $B_k = A_k$ for all $k \ge 0$. The series $\sum A_k P_k(z)$ is called the Newton interpolation series for f(z) with respect to the points z_1, z_2, \ldots ; in the special case $z_1 = z_2 = \ldots = z_0$ with fixed complex z_0 one gets the power series of f(z) at $z = z_0$ of course. It is also clear, that no conditions on $\{z_j\}$ are needed if f is a polynomial; here $R_n(z)$ is identically zero for all n > degree (f).

Theorem 1. Let f be transcendental. Then $R_n(z) \to 0$ with $n \to \infty$ for every fixed complex z, if the sequence $\{z_i\}$ satisfies

$$|z_j| \le \exp(cj^{\varkappa}) \quad (j \ge 1)$$

with one of the following additional conditions

- (i) $\kappa = 0, \ 0 \le c$;
- (ii) if $\rho = 1$: $0 < \varkappa$, 0 < c;
- (iii) if $1 < \rho < \infty$: $0 < \varkappa < (\rho 1)^{-1}$, 0 < c:
- (iv) if $\sigma = 0$: $0 < \varkappa \le (\varrho 1)^{-1}$, 0 < c;
- (v) if $0 < \sigma < \infty$: $0 < \kappa \le (\varrho 1)^{-1}$, $0 < c < (\varrho \sigma)^{-1/(\varrho 1)}$.

Remark 1. A transcendental f with $\varrho < \infty, \sigma < \infty$ has $\varrho > 1$.

Remark 2. If the sequence $\{z_j\}$ is bounded (see (i)), then each entire function f(z) is represented by its interpolation series $\sum_{k=0}^{\infty} A_k P_k(z)$, independent of the growth of f. The cases (ii) up to (v) are concerned with unbounded $\{z_j\}$: Depending on the growth of f conditions on the growth of $|z_j|$ with f ensuring the convergence of $\sum A_k P_k(z)$ to f(z) are given.

Remark 3. The entire function (treated from the arithmetical point of view in [1]) $f_0(z) := \prod_{k=1}^{\infty} (1-ze^{-k})$ shows that the result of Theorem 1 is best possible if $\{z_j\}$ is unbounded: First we have $\varrho(f_0)=2$. If we take $z_j=e^j$ $(j\ge 1)$, then (5)

is satisfied with $\varkappa = c = 1$; so $\varkappa < (\varrho - 1)^{-1}$ is not valid, but $\sigma(f_0) = 1/2$ and $\varkappa = (\varrho - 1)^{-1}$. In $c \le (\varrho \sigma)^{-1/(\varrho - 1)}$ we have not the strong inequality (which would imply $R_n(z) \to 0$ with $n \to \infty$), but we have equality. Here we have indeed $R_n(0) = 1$ for all $n \ge 0$.

PROOF OF THEOREM 1. We have

(6)
$$|P_n(z)| \le (|z|+1)^n \exp\left(c \sum_{j=1}^n j^{\varkappa}\right) \le \exp\left(\frac{c}{\varkappa+1} n^{\varkappa+1} + cn^{\varkappa} + c_1(z)n\right)$$

and from (1) and (2) with arbitrary $\varepsilon > 0$

(7)
$$\log M(r) \le \begin{cases} (\log r)^{\varrho + \varepsilon} & \text{(if } \varrho < \infty) \\ (\sigma + \varepsilon)(\log r)^{\varrho} & \text{(if furthermore } \sigma < \infty) \end{cases}$$

for all $r \ge r_0(\varepsilon)$. If the inequality

(8)
$$r \ge 2 \operatorname{Max} (|z|, \exp (cn^{\varkappa}))$$

is also satisfied and if we choose $|\zeta|=r$ as $C_{n,z}$ in (4b), then we get

$$(9) \quad \left| \frac{1}{2\pi i} \int_{C_{n,z}} \frac{f(\zeta) d\zeta}{(\zeta - z) P_n(\zeta)} \right| \leq 2^{n+1} M(r) r^{-n} \leq \begin{cases} \exp\left(-n \log r + (\log r)^{\varrho + \varepsilon} + n + 1\right) \\ (\text{if } \varrho < \infty) \\ \exp\left(-n \log r + (\sigma + \varepsilon)(\log r)^{\varrho} + n + 1\right) \end{cases}$$

$$(\text{if furthermore } \sigma < \infty).$$

Ad (i): If $\kappa = 0$, then $|P_n(z)| \le \exp(c_2(z)n)$ by (6) and therefore $|R_n(z)| \le 2M(r)(2e^{c_2(z)}r^{-1})^n$ from which we get the assertion by fixing r such that $r > \max(r_0, 2|z|, 2e^c, 2e^{c_2})$.

Ad (ii) up to (v): Here we have $\varrho < \infty$ and furthermore (in (iv), (v)) $\sigma < \infty$. If (5) is satisfied with $\varkappa > 0$, $\varepsilon > 0$, then we can assume w.l.o.g. $\varepsilon > 0$ so small, that

(10a)
$$\varkappa < (\varrho + \varepsilon - 1)^{-1}$$
 (for (ii), (iii)) resp.

(10b)
$$c < (\varrho(\sigma + \varepsilon))^{-1/(\varrho - 1)} \quad \text{(for (iv), (v), if } \varkappa = (\varrho - 1)^{-1}\text{)}.$$

If we choose r by

(11a)
$$\log r = (n/(\varrho+\varepsilon))^{1/(\varrho+\varepsilon-1)} \text{ resp. (11b) } \log r = (n/\varrho(\sigma+\varepsilon))^{1/(\varrho-1)}$$

then $r \ge r_0(\varepsilon)$ and (8) are satisfied for all $n \ge n_0(\varepsilon, z)$ by (10a) and (10b). If we use (6), (9) and (11a) resp. (11b) to estimate $R_n(z)$ from (4b), we get in the cases (ii), (iii)

$$\log |R_n(z)| \leq -(\varrho+\varepsilon-1)(n/(\varrho+\varepsilon))^{1+1/(\varrho+\varepsilon-1)} + c(\varkappa+1)^{-1}n^{\varkappa+1} + cn^{\varkappa} + c_3(z)n.$$

From this we find the asserted result by $\varrho + \varepsilon > 1$ and (10a). In the cases (iv), (v) we get analogously

(12)
$$\log |R_n(z)| \leq -\left(1 - \frac{1}{\rho}\right) \left(\varrho(\sigma + \varepsilon)\right)^{-1/(\varrho - 1)} n^{1 + 1/(\varrho - 1)} + \frac{c}{\varkappa + 1} n^{\varkappa + 1} + cn^{\varkappa} + c_4(z) n.$$

 $\varkappa < (\varrho - 1)^{-1}$ is already settled in (iii) and so we can assume $\varkappa = (\varrho - 1)^{-1}$ and the right hand side of (12) becomes

$$-(1-\varrho^{-1})\big((\varrho(\sigma+\varepsilon))^{-1/(\varrho-1)}-c\big)n^{\varrho/(\varrho-1)}+cn^{1/(\varrho-1)}+c_5(z)n$$

from which we get (by (10b)) once more the assertion.

3. Logarithmic order and interpolation coefficients. Now let f be an entire function and $\{z_j\}$ an infinite sequence of complex numbers such that either f is a polynomial or f is transcendental and f, $\{z_j\}$ satisfy one of the conditions (i) up to (v) of Theorem 1. Then

(13)
$$f(z) = \sum_{k=0}^{\infty} A_k P_k(z)$$

is valid in the whole complex plane and we look for a connection between $\varrho(f)$ and the interpolation coefficients A_k . To this purpose we define 2)

(14)
$$\mu(f) := \limsup_{n \to \infty} \frac{\log n}{\log \left(-\log |A_n|\right)}.$$

If f is a polynomial, then we have obviously $\mu(f)=0$ since $A_n=0$ for all n> degree (f); especially if f is a nonconstant polynomial then we have $\varrho=(1-\mu)^{-1}$. We prove this identity for transcendental f too, if f, $\{z_j\}$ satisfy one of the conditions (i) up to (v) of Theorem 1:

Theorem 2. Let f be transcendental and let f, $\{z_j\}$ satisfy one of the conditions (i) up to (v) of Theorem 1. Then the coefficients A_n of the series (13) for f(z) have the property, that $\mu(f)$ satisfies

$$0 \le \mu(f) \le 1$$
 and $\varrho(f) = (1 - \mu(f))^{-1}$.

Remark 4. The coefficients A_n depend on the choice of $\{z_i\}$ but not $\mu(f)$.

Corollary 1. [4] To every $\lambda \in [1, \infty]$ there are entire transcendental functions f_{λ} with $\varrho(f_{\lambda}) = \lambda$.

PROOF. Define $f_{\lambda}(z) := \sum_{n=0}^{\infty} a_n(\lambda) z^n$ with $a_n(\lambda) := \exp(-n^{\lambda/(\lambda-1)})$, if $\lambda \in (1, \infty)$ and $a_n(1) := \exp(-n^n)$. f_{λ} is entire transcendental and choosing all $z_j = 0$ condition (i) of Theorem 1 is satisfied and from $A_n = a_n(\lambda)$ we see $\mu(f_{\lambda}) = 1 - 1/\lambda$, if $\lambda \in (1, \infty)$ and $\mu(f_1) = 0$. Therefore we have by Theorem 2: $\varrho(f_{\lambda}) = \lambda$ for $\lambda \in [1, \infty)$. Of course $\varrho(e^z) = \infty$.

PROOF OF THEOREM 2. If we choose $|\zeta|=r$ as C_{n+1} in (4a) with

$$(15) r \ge 2 \exp\left(c(n+1)^{\varkappa}\right)$$

we get immediately from (4a)

(16)
$$|A_n| \le 2^{n+1} M(r) r^{-n} \quad (n \ge 0).$$

If $\kappa=0$ (case (i)), then we fixe $r \ge \max(2e^c, 4e)$ and obtain $|A_n| \le 2^{1-n} M(r) e^{-n} < e^{-n}$ for all large n and therefore $\log(-\log|A_n|) > \log n$ so that $0 \le \mu \le 1$ by (14). If $\varrho < \infty$, it follows from (16) and the first part of (7), that

$$(17) |A_n| \leq \exp\left(n - (\varrho + \varepsilon - 1)(n/(\varrho + \varepsilon))^{1 + 1/(\varrho + \varepsilon - 1)}\right) (n \geq n_0),$$

²) If $A_n = 0$, then $\frac{\log n}{\log (-\log |A_n|)}$ is defined to be zero.

choosing r as in (11a); remark that (15) is satisfied if we suppose (10a) for ε (which is obviously no condition in the case $\varkappa=0$). From (17) follows $\log(-\log|A_n|) \ge \frac{\varrho+\varepsilon}{\varrho+\varepsilon-1}\log n+O(1)$ which gives $0 \le \mu \le 1-(\varrho+\varepsilon)^{-1}$ for every small $\varepsilon>0$. So we get in the cases (i) with finite ϱ , (ii), (iii) $0 \le \mu < 1$ and

(17)
$$\mu \leq 1 - \varrho^{-1}$$
.

Since $\mu \le 1$, inequality (17) is also correct for $\varrho = \infty$. If $\sigma < \infty$ it follows from (16) and the second part of (7)

(18)
$$|A_n| \le \exp\left(n - \left(1 - \frac{1}{\varrho}\right) \left(\varrho(\sigma + \varepsilon)\right)^{-1/(\varrho - 1)} n^{1 + 1/(\varrho - 1)}\right)$$

choosing r as in (11b); then (15) is satisfied supposing (10b) for ε . Therefore we have $\log(-\log|A_n|) \ge \frac{\varrho}{\varrho-1} \log n + O(1)$ for all large n so that we get $0 \le \mu < 1$ and (17) also in the cases (iv), (v).

Theorem 2 is shown, if we can further prove

$$\varrho \le (1-\mu)^{-1}$$

and in case $\mu=1$ this is trivially true. Thus we can suppose $\mu<1$ and $\epsilon>0$ so small that $\mu+\epsilon<1$ is satisfied too. From the definition (14) we have

$$(20) |A_n| \le \exp\left(-n^{1/(\mu+\varepsilon)}\right) (n \ge n_0(\varepsilon))$$

and therefore from (13), if we treat first the case $\varkappa = 0$ and if we use

(21)
$$|P_n(z)| \le (2r)^n$$
 on $|z| = r$ for all $r \ge e^c$,

we get

(22)
$$M(r) \leq \sum_{n < n_0} |A_n| (2r)^n + \sum_{n \geq n_0} \exp(n \log 2r - n^{1/(\mu + \varepsilon)}).$$

Defining the integer $N_0(r)$ by

(23)
$$N_0(r) := [(\log 4r)^{(\mu+\epsilon)/(1-\mu-\epsilon)}]$$

and splitting up the second sum on the right hand side of (22) as $\sum_{n_0 \le n \le N_0(r)} + \sum_{n > N_0(r)}, \text{ we find by (23): } \sum_{n > N_0(r)} \dots < \sum_{n > N_0(r)} 2^{-n} < 1, \text{ whereas}$

(24)
$$\sum_{n_0 \le n \le N_0(r)} \dots \le N_0(r) \exp\left\{ (1 - \mu - \varepsilon) (\mu + \varepsilon)^{(\mu + \varepsilon)/(1 - \mu - \varepsilon)} (\log 2r)^{1/(1 - \mu - \varepsilon)} \right\}.$$

Using these estimations in (22), we find from the definition (1) that $\varrho \leq (1-\mu-\epsilon)^{-1}$ and so we have (19) since ε was arbitrary.

The (uniform) treatment of the case $\varkappa>0$ is a bit more delicate. Since (19) is certainly correct for $\varrho=1$, inequality (19) has only to be shown in the cases (iii), (iv), (v) of Theorem 1 and here we have always $\varkappa \leq (\varrho-1)^{-1}$. If $(\mu+\varepsilon)^{-1} \leq \varkappa+1$, from the last inequality we get $\varrho \leq (1-\mu-\varepsilon)^{-1}$ and therefore (19). Thus we can assume

$$(25) 1 + \varkappa < (\mu + \varepsilon)^{-1}.$$

With the c>0 from Theorem 1 we define

(26)
$$N(r) := [c^{-1/\varkappa} (\log r)^{1/\varkappa}];$$

on the cercle |z|=r we have

(27)
$$|P_n(z)| \le \begin{cases} (2r)^n & \text{if } n \le N(r), \\ 2^n r^{N(r)} \exp\left(c \sum_{j=1+N(r)}^n j^{\varkappa}\right) & \text{if } n > N(r). \end{cases}$$

Choosing r so that $N(r) > n_0(\varepsilon)$ we have from (13), (20), (27)

(28)
$$M(r) \leq \sum_{n < n_0} |A_n| (2r)^n + \sum_{n_0 \leq n \leq N(r)} \exp(n \log 2r - n^{1/(\mu + \varepsilon)}) +$$

$$+ \sum_{n > N(r)} \exp(n - n^{1/(\mu + \varepsilon)} + N(r) \log r + \frac{c}{\varkappa + 1} n^{\varkappa + 1} + cn^{\varkappa} - \frac{c}{\varkappa + 1} N(r)^{\varkappa + 1}).$$

For the second sum on the right hand side we have once more (24), but now with N(r) from (26) instead of $N_0(r)$. Choosing r so that we have $\frac{1}{2}n^{1/(\mu+\epsilon)} \ge \frac{c}{\varkappa+1}n^{\varkappa+1} + cn^{\varkappa} + n$ for all n > N(r) (which is possible by (25)) we get from (26)

$$\begin{split} \sum_{n > N(r)} \dots &< \exp\left(c^{-1/\varkappa} (\log r)^{(\varkappa + 1)/\varkappa}\right) \sum_{n > N(r)} \exp\left(-\frac{1}{2} \, n^{1/(\mu + \varepsilon)}\right) = \\ &\qquad \exp\left(c^{-1/\varkappa} (\log r)^{(\varkappa + 1)/\varkappa} - \right. \\ &\left. - \frac{1}{2} \, (N(r) + 1)^{1/(\mu + \varepsilon)}\right) \sum_{j = 0}^{\infty} \exp\left\{-\frac{1}{2} \, \left((N(r) + 1 + j)^{1/(\mu + \varepsilon)} - (N(r) + 1)^{1/(\mu + \varepsilon)}\right)\right\}. \end{split}$$

Using once more (26) and Bernoulli's inequality we find

(29)
$$\sum_{n>N(r)} \dots < \exp\left(c^{-1/\varkappa}(\log r)^{(\varkappa+1)/\varkappa} - \frac{1}{2} c^{-1/\varkappa(\mu+\varepsilon)}(\log r)^{1/\varkappa(\mu+\varepsilon)}\right) \times \sum_{j=0}^{\infty} \exp\left(-\frac{j}{2(\mu+\varepsilon)} (N(r)+1)^{(1-\mu-\varepsilon)/(\mu+\varepsilon)}\right)$$

and \sum_{j} ... is bounded by an absolute constant. The first factor on the right hand side of (29) is also bounded as $r \to \infty$ in virtue of (25) and we get $\varrho \le (1 - \mu - \varepsilon)^{-1}$ and so (19).

4. Logarithmic type and interpolation coefficients. Here we investigate the connection between $\sigma(f)$ and the A_n 's for entire functions f with $1 \le \varrho(f) < \infty$. To this purpose we define 3)

(30)
$$v(f) := \limsup_{n \to \infty} \frac{n^{\varrho}}{(-\log |A_n|)^{\varrho - 1}}.$$

If f is a nonconstant polynomial, then v(f)=0 and $\sigma(f)=\text{degree}(f)$. This shows that the supposition of the transcendence of f cannot be canceled in the next theorem.

Theorem 3. Let f be transcendental with $\varrho(f) < \infty$ and let $f, \{z_j\}$ satisfy one of the conditions (i) up to (v) of Theorem 1. Then the coefficients A_n of the series (13) for f(z) have the property that we have for v(f)

$$\sigma = \nu(\varrho - 1)^{\varrho - 1} \varrho^{-\varrho} \quad (0^0 := 1).$$

Remark 5. By Remark 1 $\varrho = 1$ implies here $\sigma = \infty$ and by (30) we have also $v = \infty$ since $A_n \neq 0$ infinitely often. So we can confine us to $1 < \varrho < \infty$ for the proof.

Remark 6. Lemma 1, ii) in [1] is a very special case of Theorem 3.

Corollary 2. Let λ , ω be given with $1 < \lambda < \infty$, $0 \le \omega \le \infty$. Then there are entire functions $f_{\lambda,\omega}(z)$ with $\varrho(f_{\lambda,\omega}) = \lambda$, $\sigma(f_{\lambda,\omega}) = \omega$.

PROOF. Take $\sum z^n \exp\left(-(n^{\lambda} \log n)^{1/(\lambda-1)}\right)$ if $\omega=0$, $\sum z^n \exp\left(-(n^{\lambda} \log^{-1} n)^{1/(\lambda-1)}\right)$ if $\omega=\infty$ and $\sum z^n \exp\left(-(n^{\lambda} v^{-1})^{1/(\lambda-1)}\right)$ if $0<\omega<\infty$, where $v:=\omega\lambda^{\lambda}(\lambda-1)^{1-\lambda}$.

PROOF OF THEOREM 3. If $\sigma < \infty$ we have immediately from (18) that $v \le \sigma \varrho^{\varrho} (\varrho - 1)^{1-\varrho}$ which is also correct for $\sigma = \infty$. To prove Theorem 3 we show

(31)
$$\sigma \leq \nu \varrho^{-\varrho} (\varrho - 1)^{\varrho - 1}$$

which is true for $v = \infty$. So we can suppose $v < \infty$ and we have from the definition (30)

$$|A_n| \le \exp\left(-(\nu+\varepsilon)^{-1/(\varrho-1)} n^{\varrho/(\varrho-1)}\right) \quad (n \ge \overline{n}_0(\varepsilon))$$

instead of (20). To treat the case $\varkappa=0$ we argue exactly as in the proof of Theorem 2 replacing (20) by (32) and $N_0(r)$ in (23) by $\overline{N}_0(r) := [(\nu+\varepsilon)(\log 4r)^{\varrho-1}]$. We find $\sum_{n>N_0(r)} \ldots <1$ and instead of (24)

(33)
$$\sum_{\overline{N}_0 \leq n \leq \overline{N}_0(r)} \dots \leq \overline{N}_0(r) \exp\left((\nu + \varepsilon)(\varrho - 1)^{\varrho - 1} \varrho^{-\varrho} (\log 2r)^{\varrho}\right)$$

from which (31) follows.

To treat the case $\varkappa>0$ we start from (28) with n_0 , $n^{1/(\mu+\varepsilon)}$ replaced by \overline{n}_0 , $(\nu+\varepsilon)^{-1/(\varrho-1)}n^{\varrho/(\varrho-1)}$ but with the same N(r) as in (26). Then the sum $\sum_{\overline{n}_0 \le n \le N(r)}$ has the same bound as in (33) with N(r) instead of $\overline{N}_0(r)$. The sum $\sum_{n>N(r)}$ is estimated by

$$\exp\left(\frac{\varkappa}{1+\varkappa}c^{-1/\varkappa}(\log r)^{(\varkappa+1)/\varkappa}\right)\sum_{n>N(r)}\exp\left(-(\nu+\varepsilon)^{-1/(\varrho-1)}n^{\varrho/(\varrho-1)}+\frac{c}{\varkappa+1}n^{\varkappa+1}+cn^{\varkappa}+n\right)$$

³⁾ If $A_n = 0$, then $n^{\varrho}(-\log |A_n|)^{1-\varrho}$ is defined to be zero.

where we used (for later purposes) the term $-c(\varkappa+1)^{-1}N(r)^{\varkappa+1}$ in (28) too. If $\varkappa < (\varrho-1)^{-1}$ we choose r so large that the sum $\sum_{n>N(r)}$ in (34) is bounded by

(35)
$$\sum_{n>N(r)} \exp\left(-\frac{1}{2}(\nu+\varepsilon)^{-1/(\varrho-1)}n^{\varrho/(\varrho-1)}\right) < \\ < \exp\left(-\frac{1}{2}(\nu+\varepsilon)^{-1/(\varrho-1)}c^{-\varrho/\varkappa(\varrho-1)}(\log r)^{\varrho/\varkappa(\varrho-1)}\right) \cdot \sum_{j=0}^{\infty} \dots$$

where \sum_{j} is a sum of the same type as in (29) being bounded by an absolute constant. Inserting (35) in (34) and using $\varkappa+1<\varrho/(\varrho-1)$ we find that (34) is bounded by an absolute constant so that (31) is proved for $\varkappa<(\varrho-1)^{-1}$.

To prove it finally in the case $\varkappa = (\varrho - 1)^{-1}$ we can assume w.l.o.g. that

(36)
$$c < \varrho(\varrho - 1)^{-1}(\nu + \varepsilon)^{-1/(\varrho - 1)}$$

since otherwise we have from a part of condition (v) of Theorem 1 $\varrho(\varrho-1)^{-1}(v+\varepsilon)^{-1/(\varrho-1)} \le c < (\varrho\sigma)^{-1/(\varrho-1)}$ from which (31) follows. $\sum_{n>N(r)}$ in (34) is by $\varkappa=(\varrho-1)^{-1}$

$$\sum_{n>N(\rho)} \exp\left[-\left((\nu+\varepsilon)^{-1/(\varrho-1)} - \frac{c(\varrho-1)}{\varrho}\right) n^{\varrho/(\varrho-1)} + c n^{1/(\varrho-1)} + n\right]$$

with a positive factor of $n^{\varrho/(\varrho-1)}$ by (36). Choosing r large enough we conclude as in the proof of (29), that (34) is bounded by $\exp\left((c-(v+\varepsilon)^{-1/(\varrho-1)}+\varepsilon)c^{-\varrho}(\log r)^\varrho\right) \le \exp\left(((v+\varepsilon)^{-1/(\varrho-1)}-\varepsilon)^{1-\varrho}\frac{(\varrho-1)^{\varrho-1}}{\varrho^\varrho}(\log r)^\varrho\right)$; here we supposed ε so small that $\varepsilon < (v+\varepsilon)^{-1/(\varrho-1)}$ which is possible for each $v \in [0, \infty)$. Collecting all estimations we find

$$\sigma \leq \big((v+\varepsilon)^{-1/(\varrho-1)} - \varepsilon\big)^{1-\varrho} (\varrho-1)^{\varrho-1} \varrho^{-\varrho}$$

and therefore (31) in the case $\varkappa = (\varrho - 1)^{-1}$ too.

J. Indian Math. Soc. 16 (1952), 177-182.

Theorem 3 tells us that v(f) is independent of the choice of $\{z_i\}$.

References

- P. BUNDSCHUH, Arithmetische Untersuchungen unendlicher Produkte, Invent. Math. 6 (1969), 275—295.
- [2] P. BUNDSCHUH, Ein Satz über ganze Funktionen und Irrationalitätsaussagen, Invent. Math. 9 (1970), 175—184.
- [3] P. K. Jain, and V. D. Chugh, On the logarithmic convergence exponent of the zeros of entire functions, Yokohama Math. J. 21 (1973), 97—101.
- [4] E. Josko, Über ganze Funktionen von langsamem Wachstum, Staatsexamensarbeit Köln, 1975.[5] S. M. Shah and M. Ishaq, On the maximum modulus of the coefficients of an entire series,

AUTHOR'S ADDRESS: MATHEMATISCHES INSTITUT DER UNIVERSITÄT, WEYERTAL 86—90, D—5000 KÖLN 41.

(Received November 26, 1976.)