On entire functions of slow growth

By P. BUNDSCHUH (Kéln)

1. Introduction. If f(z) is an entire function and M(r, f):= ll\;ilg:rc £ (2,

then ¢,(f):= limsup log lol%) ;{(r, o, is called the (classical) order of f. If
0<g. (f)<< then one introduces further o,(f):=lim supbg—rii((—;—’;ﬂ and de-
notes o, (f) by the (classical) type of f. In the theory of entire functions it is well
known how ¢.(f) and o,(f) can be expressed by the coeflicients a, of the Taylor
series > a,z" of f.

In their interesting note [3] P. K. JAIN and V. D. CHUGH introduced a logarithmic
order o(f) for entire functions f by

loglog M(r, f)
log log r

(1) (/) := lim sup

and proved the analogues of some classical results on entire functions. It is clear
that o(f)=0, if f is constant, and ¢(f)=1 otherwise. Especially if f is a non-
constant polynomial, then we have ¢(f)=1; but there are also entire transcendental
functions f with ¢(f)=1. For nonconstant entire functions f with g(f)<-<
we introduce further the notion of logarithmic type o(f) by 1)

= log M(r,
@ o(f) = limsupCE D

one can ask how ¢ and o are expressed by the a,’s. This was recently answered
by Miss E. Josko [4]; concerning ¢ there is already a result of S. M. SHAH and
M. IsHAQ [5].

Here we treat these questions more generally giving a connection between
0,0 and the coefficients of certain interpolation series for f(z). Such formulas
have applications in other mathematical topics, e.g. in Diophantine Approxima-
tions (see [1], [2]).

2. Interpolation series. Let {z;},., .  be an infinite sequence of complex
numbers and f(z) an entire function. If we define polynomials P,(z) by

Kk
3) Py(z):=1, Pi(2) :=jg(z-zj) k=1

'y We write only M(r), g, o instead of M(r, /), e(f), a(f) if there is no risk of confusion.
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and A4,, 4,, ...; R,(z) by

f f©QdL
2m E=2)P,

=] fQdc .
(4a) 4= 5— c.f, R (4b)  R,(2):=P,(2)

then we have
n=1
f(2) =£; AP (2)+R,(2) (n=0).

Cy resp. C, . in (4a) resp. (4b) can be chosen as cercles around {=0 containing
Biginsy TETEREG By i s B2 B

For transcendental f the following Theorem 1 gives sufficient conditions
on the sequence {z;} which guarantee R,(z)—~0 with n—< for every complex z.

If these conditions are satisfied, f(z) can be represented by the series Z AP (2)
in the whole complex plane. If one has any representation Z'BtP,‘(z) for f(2),

valid in the whole complex plane, then it follows that B,q-A, for all k=0. The
series D> A, P, (z) is called the Newton interpolation series for f(z) with respect
to the points z;, z,, ...; in the special case z,=z,=...=z, with fixed complex z,
one gets the power series of f(z) at z=z, of course. It is also clear, that no con-
ditions on {z;} are needed if f is a polynomial; here R,(z) is identically zero for
all n=>degree (f).

Theorem 1. Let f be transcendental. Then R,(z)—~0 with n—< for every
fixed complex z, if the sequence {z;} satisfies

(5) |zjl =exp(cj) (j=1)
with one of the following additional conditions
(1) x=0, 0=c;

(i)if o=1:0=<=x 0<c;
(i) if l=pg=e: 0=x<(=1)", 0=<c;
iv)ife=0:0<=x=(-1)", 0=<c;
V) if0<=o=<o: 0<=x=(0—1)"", 0<c < (go) V=D,
Remark 1. A transcendental f with g<o,6<o has p=1.
Remark 2. If the sequence {z;} is bounded (sce (i), then each entire function
f(z) is represented by its interpolation series Z'AkPk(z) independent of the

growth of f. The cases (ii) up to (v) are concerncd w:th unbounded {z;}: Depending
on the growth of f conditions on the growth of |z;| with j ensuring the convergence
of B A, P(z) to f(z) are given.

Remark 3. The entire function (treated from the arithmetical point of view
in [1]) fo(2):= ]T (1—ze~*) shows that the result of Theorem 1 is best possible
if {z;} is unbounded First we have ¢(f;)=2. If we take z;=¢/ (j=1), then (5)
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is satisfied with x=c=1; so x<(g—1)~! is not valid, but o(f;)=1/2 and
x=(g—1)"%. In c=(go) "1 we have not the strong inequality (which would
imply R,(z)~0 with n-<), but we have equality. Here we have indeed R,(0)=1
for all n=0.

PRrOOF OF THEOREM 1. We have

(6) |P,(2)] = (|z|+1)"exp(c 2“’ Jj*) = exp [—c— n*+l fen* + cl(z)n]
=1 x+1
and from (1) and (2) with arbitrary &¢=0
(log r)e*e (if ¢ =)
™ log M() % {(a-!—s)(log r)?  (if furthermore ¢ <)
for all r=ry(e). If the inequality
(8) r = 2Max(|z], exp (cn¥))

is also satisfied and if we choose [{|=r as C, . in (4b), then we get
exp(—nlogr+(logr)?*t4+n+1)

O |am S ams| =2 Mo = [ (if ¢ <=)

i . exp(—nlogr+(c+e)(logr)*+n+1)
(if furthermore o < <e).

Ad (i): If %=0, then |P,(z)|=exp(cs(z)n) by (6) and therefore |R,(z)|=

=2M(r)(2¢*®r-1y* from which we get the assertion by fixing r such that

r=>Max (ro, 2|z|, 2¢°, 2¢).

Ad (ii) up to (v): Here we have g<-< and furthermore (in (iv), (v)) o<oo. If (5)

is satisfied with x>0, ¢c=0, then we can assume w.lL.o.g. £=0 so small, that

(10a) % < (o+e—1)"* (for (ii), (iii)) resp.

(10b) ¢ < (g(o+g)~e=1 (for (iv), (v), if x = (e—1)7?).

If we choose r by

(11a) log r = (n/(g+e))/@+e=1) resp. (11b) log r = (n/g(c+¢))"/e~V

then r=ry(¢) and (8) are satisfied for all n=n,(e, z) by (10a) and (10b). If we use

(6), (9) and (11a) resp. (11b) to estimate R,(z) from (4b), we get in the cases (ii), (iii)

log |R,(2)| = —(e+e—1)(n/(e+8))! M@ =Dt c(x+ 1)t n* 1+ cn* + ey (2)n.

From this we find the asserted result by g+&=1 and (10a). In the cases (iv), (v)
we get analogously

(12) log|R ()] =1 “}IE] (e(o+e)) eV pt+1/e=v 4

¢
x+1

x<(p—1)"1 is already settled in (iii) and so we can assume x=(g¢—1)~' and
the right hand side of (12) becomes

..-.(l i Q—l) ((Q (a +8))_1n‘l(ﬂ_1) _c)neﬂﬂ_l) +Cnln‘r(ﬂ_l) +c5 (z)n
from which we get (by(10b)) once more the assertion.

w4 en* ¢y (2)n.

i
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3. Logarithmic order and interpolation coefficients. Now let /' be an entire function
and {z;} an infinite sequence of complex numbers such that either f is a polynomial
or f is transcendental and f, {z;} satisfy one of the conditions (i) up to (v) of The-
orem 1. Then

(13) 1(2) =§.‘ AP,(2)

is valid in the whole complex plane and we look for a connection between ¢( f)
and the interpolation coefficients 4;. To this purpose we define?)

logn
Plog (—log [4,])
If f is a polynomial, then we have obviously u(f)=0 since A4,=0 for all
n=>degree (f); especially if f is a nonconstant polynomial then we have g=(1—py)~.

We prove this identity for transcendental f too, if f, {z,} satisfy one of the con-
ditions (i) up to (v) of Theorem 1:

Theorem 2. Let f be transcendental and let f, {z;} satisfy one of the conditions
(i) up to (v) of Theorem 1. Then the coefficients A, of the series (13) for f(z) have
the property, that u(f) satisfies

0=u(f)=1 and o(f) =(1—pn(fN))™.
Remark 4. The coefficients A, depend on the choice of {z;} but not u(f).

(14) uif) = limill

Corollary 1. [4] To every A€[l, =] there are entire transcendental functions
[, with o(f))=4.

ProoF. Define f;(z):= Z“’a,,().)z" with a,(2):=exp (—n*C-V), if Je(l, =)
n=0
and a,(1):=exp (—n"). f, is entire transcendental and choosing all z;=0 con-
dition (i) of Theorem 1 is satisfied and from A4,=a,(i) we see u(f)=1-1/4,
if 2€(1, =) and u( f;)=0. Therefore we have by Theorem 2: o(f,)=4 for A€[1, ==).
Of course g(e%)=co.

PrOOF OF THEOREM 2. If we choose [[|=r as C,,, in (4a) with

(15) r=2exp(c(n+1))
we get immediately from (4a)
(16) A, = 2" *M(@r)r-" (n = 0).

If =0 (case (i)). then we fixe r=Max (2¢°, 4¢) and obtain |A4,|=2'"""M(r)e "<
<e~" for all large n and therefore log (—log |4,])=logn so that 0=u=1 by (14).
If o=, it follows from (16) and the first part of (7), that

(17 |4,] = exp(n—(e+&—1)(n/(e+e)'t/@*==V) (n = ny),

log n
log (—log [4,])

) If A4,,=0, then is defined to be zero.
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choosing r as in (11a); remark that (15) is satisfied if we suppose (10a) for & (which
is obviously no condition in the case »=0). From (17) follows log (—log |4,])=
g+ée

T logn+0(1) which gives 0=u=1—(¢+e)~* for every small &=0.
So we get in the cases (i) with finite p, (ii), (iii) 0=p<1 and
(17 u=1l—-p1L

Since u=1, inequality (17) is also correct for p=e=.
If o< it follows from (16) and the second part of (7)

(18) |4,| = exp [n—[l —%] (e(o+g)) e pi+1/e=D)

choosing r as in (11b); then (15) is satisfied supposing (10b) for &. Therefore
we have log(—log |A,,|)§Q—E—]logn+0(1) for all large n so that we get O=u<I1

and (17) also in the cases (iv), (v).
Theorem 2 is shown, if we can further prove

(19) e=(l-pw™?

and in case p=1 this is trivially true. Thus we can suppose pu<1 and &=0 so
small that u+e-<1 is satisfied too. From the definition (14) we have

(20) |4,] = exp (=n**+9)  (n = ny(e))

and therefore from (13), if we treat first the case »=0 and if we use
(21) |1P,(2)| =(@2r)" on |z]=r for all r=e¢,

we get

(22) M(r) EMZ |4, (2r)" +nzzn' exp (n log 2r —n'/(#+9),
Defining the integer N,(r) l:; n

(23) Ny(r) := [(log 4r)(n+9/a=r=0]

and splitting up the second sum on the right hand side of (22) as
+ 2 ,wefind by 23): 3 ..< 5 27"<l1, whereas

ng=n=Ny(r) n=Ny(r) n=Ny(r) n=Ny(r)
(24) 2 ...= Ny(nexp{(1—p—e)(u+e)rta/d-r=a(og 2p)t/A-r=0)}
ng=n=Ny(r)

Using these estimations in (22), we find from the definition (1) that g=(1—u—e¢)™!
and so we have (19) since & was arbitrary.

The (uniform) treatment of the case »=0 is a bit more delicate. Since (19)
is certainly correct for g=1, inequality (19) has only to be shown in the cases (iii),
(iv), (v) of Theorem 1 and here we have always x=(¢—1)"% If (u+e) '=x+1,
from the last inequality we get p=(1—pu—e)~' and therefore (19). Thus we can
assume

(25) l14+x < (u+e)™L
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With the ¢=0 from Theorem 1 we define

(26) N(r) := [c~"*(log N)'*];
on the cercle |z|=r we have

2r)" if n= N(r),
(27) |Py(2) = { n

2 empie’ o JF) - E x> NP,

J=1+N(r)
Choosing r so that N(r)=ny(¢) we have from (13), (20), (27)
M@) = 3 |4,]@0"+ 3 exp(nlog2r—n'/t+o)4

(28) n=<ny ny=n=N()
— /e B iy o 2 "4l
+">%,('r> exp(n—n +N(r)log r+ T it . e N(r)*+Y).

For the second sum on the right hand side we have once more (24), but now with

N(r) from (26) instead of N,(r). Choosing r so that we have %n” (n+2) éﬁ n**l 4

+cn*+n for all n=N(r) (which is possible by (25)) we get from (26)

Z v << €Xp (c-l,’x(log r)(x+ l)tx) Z' exp [_% nlf(ﬂ +:)] =

n=N(r) n=N(r)
exp (c‘ 1/x% (log j,.)(ac+ 1)f= __

-3 (VO + 1)e+9) 3 exp {2 @@+ 1150 - v 1)),

Using once more (26) and Bernoulli’s inequality we find

Z we < EXp (C‘”"(log r)(x+ 1)/= _ _;_ o~ Vxlute) (log r)lh(nﬂ))x

(29) n=N(r)
< j — f
X ex [_ N+1 (1—p 8):(M+el]
2P 3G WO+
and ... is bounded by an absolute constant. The first factor on the right hand

side of (29) is also bounded as r—< in virtue of (25) and we get p=(1—pu—¢)™?
and so (19).

4. Logarithmic type and interpolation coefficients. Here we investigate the connec-
tion between o( f) and the 4,’s for entire functions f with 1=p(f)=<<. To this
purpose we define ¥)

nﬂ

(30) vf) = li,,nlf.,“p Clog lAF™
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If f is a nonconstant polynomial, then v(f)=0 and o(f)=degree(f). This
shows that the supposition of the transcendence of f cannot be canceled in the
next theorem.

Theorem 3. Let f be transcendental with ¢(f)<<e and let f,{z;} satisfy one
of the conditions (i) up to (v) of Theorem 1. Then the coefficients A, of the series (13)
for f(z) have the property that we have for v(f)

oc=v(p—=10"1p7 (0°:=1).

Remark 5. By Remark 1 g=1 implies here o=< and by (30) we have also
v=-eo since 4,70 infinitely often. So we can confine us to 1<g=-<> for the proof.

Remark 6. Lemma 1, ii) in [1] is a very special case of Theorem 3.

Corollary 2. Let A, o be given with 1<A<o, 0=w=<. Then there are entire
Sfunctions f; ,(z) with o(f; ,)=2, 6(f; ) =w.

ProoF. Take 3 z" exp (— (n* log m)'/*~V)if =0, 3 z" exp (— (n* log=! n)*/*~1
if o= and 2 z"exp(—(n*v)/4-D) if 0<w=<oc, where vi=wi*(A—1)'"%

PrROOF OF THEOREM 3. If o<=< we have immediately from (18) that
v=00%(p—1)'"? which is also correct for 6=<. To prove Theorem 3 we show

(31) c=vg ¢(e—1) "

which is true for v=-es. So we can suppose v<-< and we have from the defini-
tion (30)

(32) |4,| = exp (—(v+e)~ Ve~V pt/e=D) (n =jiy(e))

instead of (20). To treat the case »=0 we argue exactly as in the proof of Theorem

2 replacing (20) by (32) and N,(r) in (23) by Ny(r):=[(v+e)(log 4r)¢~']. We find
...=<1 and instead of (24)

n:-No(r)

(33) 2 .= Ny(r)exp((v+e)(e—1)""¢*(log 2r)%)

fig=n=Ny(r)

from which (31) follows.
To treat the case x=0 we start from (28) with ngy, n*/*+2 replaced by n,,
(v4e)~Ve-Dpe/le-1) but with the same N(r) as in (26). Then the sum

fg=n=N(r)
has the same bound as in (33) with N(r) instead of Ny(r). The sum B
timated by K
(34)
exp [ l-T-:.: ¢~ Vx(logr)xt 1)!»«] P%;') exp [— (v+4¢)~ V-1 ,,af(e—n_,_;i_l ety cnx_*_n]

%) If A,=0, then n°(—log|A,|)'~¢ is defined to be zero.
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where we used (for later purposes) the term —c(x+1)"'N(r)**! in (28) too. If

x<(p—1)"' we choose r so large that the sum >’ in (34) is bounded by
n=N(r)

2 exp [_ _;. (v +g)_11r(0_1) nﬂ»“(ﬂ_l)] -
n=N(r)

(3%
20 (__; Ry o Vg i gop r)“"‘(c—u] . i
Jj=0

where D' is a sum of the same type as in (29) being bounded by an absolute con-

J
stant. Inserting (35) in (34) and using x+1<p/(¢—1) we find that (34) is bounded
by an absolute constant so that (31) is proved for x<(g—1)"L
To prove it finally in the case »=(g—1)~! we can assume w.l.0.g. that

(36) c = o(p—1)"1(v+g) eV

since otherwise we have from a part of condition (v) of Theorem 1
o(e—1)"Y(v+e) Y-V =c<(gg)~"e-D from which (31) follows. 3 in (34)
is by x=(—17 n=N(r)
exp [_ [(v+£)—lj’(ﬂ_”_w] n?!’(ﬂ_l)_i_cnlf(o— 1) +n]

Q
with a positive factor of n¢/@-" by (36). Choosing r large enough we conclude as
in the proof of (29), that (34) is bounded by exp ((c—(v+&)~ Y@~V +¢g)c~¢(logr)?)=

_1ye-1
Eexp(((v+s)‘”("‘1’—a)“9(e—gle):—(Iogr)‘); here we supposed & so small

n=N(r)

that e<(v+¢)~'@-Y which is possible for each vE[0, ==). Collecting all estima-
tions we find
o= ((V+8)“"(°‘”—s)1‘9(9—1)0—1@—0

and therefore (31) in the case x=(g—1)"' too.
Theorem 3 tells us that v(f) is independent of the choice of {z;}.
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