Covering groups and presentations of finite groups I

By SIEGFRIED MOR AN (Canterbury)

Suppose one is given a finitely generated group G and a prime power p*. Then
associated with this data one has a uniquely determined group G} with the follow-
ing properties. In a presentation F/N of G+ on a minimal number of generators

NS FF*.F’
and G4 is the minimal group with this property lying above G. Also
G;i/ffpn\(G) =@,

The p’-th fundamental group 7,:(G) lies in the centre of G} and has exponent
dividing p*. The group G is finite if and only if G}s is finite.
If G} is finite, then it has a presentation of the form

(X5 s X3 X P Pamyy =, =y gy =),

where every f;=0, X={x,, x,, ..., x,}, every u; belongs to F(X), , — the k-th
dimension subgroup of the free group F(X) modulo p— and k is a natural number
greater than 1. It can be shown, using results of E. S. GoLob and 1. R. SAFAREVIE [2).
E. B. VINBERG [14] and H. KocH [9], that

r(k) > Max {(d/2)*—d (2/d)"* ¥, (d/k)*(k—1)*""—d}
for p*=k. Thus in particular
r(2) =d*4 for p*=0.
This result is new even for finite p-groups. The basic inequality (Theorem 3.6)

enables us also to give a generalisation of two inequalities of W. GAscHUTZ and
M. F. NEwMAN [1] (see Lemma 3.9, Theorem 3.10 and Theorem 4.4).

§ 1. Smooth Groups

1.1 Definition. Let m be a positive integer greater than 1. Suppose that the
group G has a set of generators X. Then G is said to be m-smooth with respect to
X if and only if G/(G” -G™) is naturally isomorphic to |X|(Z,,) (via its set of gen-
erators X). Here and subsequently |X|(Z,) stands for the (restricted) direct pro-
duct of |X| copies of Z,.

The proofs of the following two lemmas are quite easy.
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r
1.2 Lemma. Let m= [] pf+ be the decomposition of m into a product of distinct
i=1
prime powers. Then G is m-smooth with respect to X if and only if G is pfi-smooth
with respect to X for every i=1, ..., 1.

1.3 Lemma. Suppose that G is m-smooth with respect to X. Then X is a minimal
set of generators for G.

1.4 Definition. Let F=F(X) denote the free group on the set X of free genera-
tors. An element of F is said to be m-smooth with respect to X if and only if it
belongs to F™F’,

1.5 Note. An element of F=F(X) is m-smooth with respect to X if and only
if it has a representation of the form

Xay ' Xag® +ee Xgr* U,

where x,_,x are distinct elements of X, every m; is an integer and wu

Ay Nagr -

belongs to F’.

e N

1.6 Notation. Let (X; R) be a presentation of a group G. Then the presentation
is said to be m-smooth if and only if every element of R is m-smooth with respect
to X. If f=1 is some relation holding in a presentation for a group G in terms
of a set ¥ of generators and f is m-smooth with respect to Y, then f=1 is said
to be an m-smooth relation in G with respect to Y.

1.7 Lemma. If G has an m-smooth presentation on a finite set X of generators,
then any presentation of G on a set Y of generators with |Y|=|X| is m-smooth with
respect to Y.

PROOF.*)
G = F(X)/R(X) = F(Y)/R(Y),
where R(X) is contained in F(X)™-F(X)". Now
G/G"G" = F(X)/F(X)"- F(X) = F(Y)I[R(Y)- FY)"- F(Y)".

Thus G/G™G’ is the direct product of |X| copies of Z,, which gives that R(Y)C
C F(Y)" -F(Y).
We state without proof the following easy result.

1.8 Lemma. G is m-smooth with respect to X if and only if G has an m-smooth
presentation on X.

1.9 Examples

(i) Every perfect group is not m-smooth with respect to any set of generators
and any m.

*) We do not assume here and elsewhere, although the notation might be considered to
suggest it, that R(Y) is obtained from R(X) on replacing x, by y, for i=1, 2, ..., n, where

Ko Ly, Xyyacey Fay A0 Fee {¥y, ¥o0ia0 9]
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(i) Every finitely generated nilpotent group G is p-smooth with respect to
a minimal set of generators. If G is such that G/G” is torsion-free, then p can be
chosen to be any prime number. If the torsion subgroup T(G/G’) of G/G’ is non-
trivial, then p can be chosen to be any prime number p such that the p-Sylow sub-
group of T(G/G’) has the largest minimal generating set amongst all the Sylow
subgroups of T(G/G").

(iii) Let G be a finite group, P be a p-Sylow subgroup of G and d(G) denote
the number of elements in a minimal generating set X for G. Then G is p-smooth
with respect to X if and only if

d(G) = d(P/P?-(PNG")).

This follows at once from a well known theorem in transfer theory (see for instance
B. HUPPERT [6] Satz 3.3, p. 422).

(iv) A finite non-cyclic group all of whose Sylow subgroups are cyclic is not
m-smooth with respect to any set of generators for any m. This is so since the factor
commutator group is cyclic (see for instance H. ZASSENHAUS [15] p. 145).

§ 2. Smooth Covering Groups

2.1 Definition. Let G be a group having a presentation F(X)/K(X), where
K(X) is a normal subgroup of the free group F(X) on the set X of free generators.
Then

F(X)/(K(X)N(F(X)™- F(X)))

is denoted by G, (X) and is called the m-smooth covering group of G with respect to X.

2.2 Note. The relations of G5, (X) are those relations of G which are m-smooth
with respect to X.

2.3 Note. If a group H has an m-smooth presentation on X and there exists
a natural homomorphism of H onto G, then there exists a natural homomorphism
of H onto G;,(X), which makes the obvious diagram commutative. Here natural
homomorphisms are defined via the identity mapping on X.

2.4 Note. G, (X) is a central extension of an abelian m-group 4 by the group G.
If X is a finite set, then 4 has a finite number of generators. In fact

A = K(X)- F(X)"- F(X)'|F(X)" - F(X),
where G= F(X)/K(X).
2.5 Lemma. Let m, and my be coprime integers greater than 1. Then
Gy ms (X) 2= (G, (X))5, (X).

2.6 Construction. Let X be a set of generators for a group G. For every x in
X let (z,) denote a cyclic group of order m. By G,,(X) we denote the group

Gx( !E]; (zp),
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where IT* denotes the restricted direct product. Let X*={(x, z,); xéX}. Then
G, (X*) will denote the subgroup of G, (X) generated by the set of elements X.
By calculating in G, (X) one can easily establish the following result.

2.7 Lemma. A relation (in terms of the set X* of generators) holds in G (X™)
if and only if

(i) it is m-smooth with respect to X* and

(ii) under the natural mapping X*—+X it goes over to a relation which holds
between the elements of X in G.

2.7.1 Corollary
Gn(X) = Gp(X7)
under the natural mapping induced by x-—+x".

2.8 Theorem. Let the group G have a presentation of the form F(X)/K(X),
where K(X) is a normal subgroup of the free group F(X). Then, for every prime
number p,

G, (X) = GXd'-(Z,),
where d’=dim, (K(X)-F(X)?-F(X)/F(X)?-F(X)) and d’+dim, (G/G?G')=|X]|.

PROOF. Let X, be a subset of X such that {x -G?G’; x€X,} forms a basis for
G/G?G’. Let X, be the complement of X; in X. By X" and X' we denote the corre-
sponding subsets of X*. We have the following mapping

0 : G4(X*) ~ G,(X)
defined by i SR
x if x*eX;
e
QX = {x-zx if x*e Xy

and G(X*'l XM u(xF) =0 (x3)" ... O (x3 )™ - u(x*), where every x;c€X*, every
n; is an mteger and u(x*) belongs to (G*(X*), G (X))
© is single-valued. For suppose
X .. xpmeu(x)=1 in GH(X).
Then, by Lemma 2.7, we have that
O(xm...xfmeu(x)) =1 in G,(X).
@ is a group homomorphism. For suppose that
1o L N () S o, A g (X®) e AT Rt g (xT)
in F(X*). Then
O(x2m ... g™« 4y (X*) < xg™ ... Xg™e - ug(x*)) =
= O(xz)"1T™ ... O(xz)"™ ™ uy(x*) =
= 0 ()" ... O0)™ uy(x) -0 (xz)™ ... ©(xz)™ - uy(x*) =

= Q(x3™ ... ™ 14y (x*) - O (3™ ... 2™+ uy (x%).
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The kernel of @ is trivial. For suppose that

O(xzm ... xz™-u(x*)) =1 in G, (X).
Then
Xt xxeu(x)=1 in G

Also if xj€X;, then p divides n; for every i. On considering the latter relation in
G modulo G?G’, one has, by the construction of the set X,, that p divides n; if
x;,€Xy. So, by Lemma 2.7,

o Xemeu(x*) =1 in Gp(X™).
Finally we show that if x€X,, then z, belongs to @(G}(X™*)). This will show that
@ is the required isomorphism. By the construction of the set X,;, we have that

if xeX,, then
X = X1 ... Xpxow(x),

where 0=m;<p, the element x, €X, for every i and w(x) belongs to G”G’. Now

O(x*) =x-2,
while
O (xim ... xpme - w(x*)) = x ... X2 - w(x).
So
bl bk G o C w(x"‘))_l) =g
and

O(G,(X") =GX [[*(zo).
xGX,
The results concerning the number d” now follow from the established fact
that, by corollary 2.7.1,
Gy(X) = GX ]E]x" (zZy)-
*Cas

2.9 Example. 1If m is not a prime number, then it is no longer true in general
that G} (X*) is isomorphic to a group of the form GXA. Thus for instance the
p*-smooth covering group of Z, with respect to a single generator is Z,..

2.10 Lemma. Let ¢: G—+H be a homomorphism of groups which have a set
of generators X and Y respectively. Suppose that

(2.10.1) o(x,) = fo(¥p),

where X={x,,ac M} and f,(y;) is a word in the elements of the set Y ={y;, BN}
for every ac M. Then

(2.10.2) o5 (x3) = fu(yp)
for every a€ M defines a homomorphism

05 : Gu(X™) = Hy(Y™)
by means of

@F (xam ... xpm e u(x®)) = @f ()™ ... @of (x3)™ - u(of (x*),
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where u(x*) belongs to G,(X*). The following diagram is commutative

G (X)

H,(Y)

g
Further suppose that y: H—~K is a homomorphism and K has a set T of generators

such that
Y (yp) = g(t,)

Jor every BEN, where T={t,} and g,(t,) is a word in the elements of T for every
BEN. Then

Ui 00f = (W 00)e,.
PrOOF. (i) ¢f is single-valued. For suppose that
Xt Xgmeeu(x*) =1 in Gp(X™).
Then n; is divisible by m for every i and
xg..xxeu(x)=1 in G,
by Lemma 2.7. So
I Op)" o Lo )™ -u(f(yp)) =1 in H.
Since m divides n; for every i, the latter relation implies that
S O [ ) u(f) =1 in Hy(Y").
This says that
of ()™ .. of () u(pf (xD)) =1 in Hy(Y?).

Hence ¢y is single-valued.
(i) @7 preserves the group operation. For suppose that

Xatt ooo Xome oty (%) e 2z L. X3 s ug(x*) =
= it Az m  FXT).
Then, as in the proof of Theorem 2.8, we have that
OF (XM ... X o 1y (x*) o Xz ... XZM o Uy (x¥)) =
= @f (xz™ ... x3m e uy (x¥)) + F (xz™ ... xz™ < uy(x*)).
(iii) By definition,

W o@)og: Gu(X™) — Ka(T)
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and the group homomorphism is defined by

(W 0 @)fe4(x3) = f(g5(1}))
=f.(v; (vp))
=y, (£:0p)
= Y, (of (x3))

= (Y oo7)(x7)
for all e M.

2.11 Lemma. Let ¢: G—+H be an isomorphism of groups which have a set of
generators X and Y respectively. Using the notation of Lemma 2.10, we further suppose
that the homomorphism ¢: F(X)—~F(Y) defined by ¢(x,)=f,(y;), for all o in M,
induces an isomorphism of F(X)/F(X)™- F(X) onto F(Y)/F(Y)"- F(Y)'. Then the
homomorphism ¢; is an isomorphism of G,(X*) onto H,(Y").

PrOOF.*) Denote G, (X*) and H,, (Y*) by G and H,! respectively. Now
(Gp)"+(Gp) = G™-G" and (H,)"-(H,) =H"-H".
Also GL/(GL™-(GL)Y = F(X)/F(X)"- F(X) and
Ha/(H)" - (HRY = F(Y)/F(Y)*-F(Y)Y
under natural isomorphisms. Now
(P;I(G;,)”'-(G;,)’ = @lgm.g
which gives an isomorphism onto H™. H’. Also ¢; induces an isomorphism of
GL/(G)"+(Gp)" onto  H,/(H,)"-(H,)"
Hence ¢/ is an isomorphism onto.
2.12 Lemma. Let X=X,UY be a set of generators of a group G such that
xxNY =0 and Y S G"-G.
Further let H be the subgroup {w,y*; weXy, y€Y) in G,(X). Then
H=GX(Y|(Z,)) and Hi((X;UY**) = GL(X™").

Further if X is a finite set and X, is a minimal set of generators for G modulo G™ - G’,
then X, JY™ is a minimal set of generators for the group H.

PRrOOF. (1) We have that for every yeY
=X X u),

*) I am grateful to Dr. V. AGHOOBZADEH for drawing my attention to the fact that my original
proof was not convincing,
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where every x,, belongs to X, every n; is divisible by m and u(x) belongs to G”. Let

A {x if x belongs to X,
YElx oif x belongs to Y

for all x in X. Then the product of the elements
y* and (X3 ... Xpeu(X)?

of H is z,, which thus also belongs to H, for all y in ¥. Hence

yr

H 2 GX(|Y(Z,)

which gives the required equality, since the reverse inclusion obviously holds.
(i1) The mapping ¢: H—+G defined by

(X)) e=x for'all' 2 mY

is a homomorphism onto G with kernel |Y|(Z,). By Lemma 2.10, we have the
corresponding homomorphism

@*: Hy(X*) - Gh(X),
where X={X; x€X} and ¢*(x*)=x" for all X* in X*. ¢* is clearly surjective

Suppose that
@*(Xim ... Ximou(3Y) = 1,

where every X belongs to X, every #; is an integer and u(X*) belongs to H,5(X*)'.
Then
X .. X eu(x¥)=1 in GR(X*).

Hence, by Lemma 2.7,
xg...xgkeux)=1 in G
and every n; is divisible by m. Hence
Xp..Xxeu(x)=1 in H
and, by Lemma 2.7,
m,, Xee.u(x) =1 in HI(X").

So ¢* is also injective.

(iii) No proper subset of X,UY is a set of generators for H. For otherwise
either a proper subset of X, is a set of generators for G modulo G™- G’ or |Y|(Z,)
has a set of generators with less than |Y| elements. Both of these assertions con-
tradict our assumptions. If 7' is a set of generators for H, then T is a set of generators
for H modulo H™- H’. Now

H/H™-H' = (G|G™ - G")X(|Y (Z,))-
Hence |T|=|X]|.
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2.12.1 Note. A proof similar to Proof (ii) above shows that if X=X,UY is
a set of generators for G and X;NY=0, then

Ga(X") = HI (X, UY*").

2.13 Theorem. Let G be a finitely generated group and X and Y be finite sets
of generators of G. Then
Ga(X™?) = GL(Y")
if and only if |X|=|Y|.

PrROOF. Suppose that G (X*)=G,(Y*). Then, by Lemma 1.3, the set X*
and the image of the set ¥Y* under the above isomorphism are minimal sets of
generators of G, (X*). Hence |X*|=|Y*|, which gives that |X|=|Y]|.

Conversely suppose now that |X|= IY |. By Lemma 2.5, and Corollary 2.7.1
we may assume that m is of the form p*. We are given that

G = F(X)/R(X) = F(Y)/R(Y),

where F(X) and F(Y) are free groups on sets of free generators X and Y respect-
ively. Let

F(X)».F(XY-R(X) = K(X) and F(Y)*.F(YY-R(Y) = K(Y).

By W. MaGNus, A. KARRASS, D. SOLITAR [12] Theorem 3.5 (p. 140), Theorem 3.2
(p- 131) and Lemma 3.2 (p. 133), one can pass from a set X to another set 4 of
free generators for F(X)= F(A) by applying a finite number of elementary Nielsen
transformations so that the following situation holds.

G/G" -G’ == F(A)/K(A)

and {afi-q,(a); with i=1,2,...,k} forms a set of generators for K(A), where
g:(a) belongs to F(A) for every i. Also k=|X| and there exists an integer k" with
1=k"=k such that d,=0 for every i=k" while d;=1 for every i=k’. Here
every d; is a non-negative integer and d; divides d;,, with each of them being a
power of p, for i=1,2,...,k"—1. There is an exactly similar situation hniding
for Y, B, and F(Y)=F(B) with the same k, k" and d,.

Since every elementary Nielsen transformation is invertible, one has, by Lemma
2.11, that

Gp(X7™) = Gpa(4") and Gpa(Y™) = G (BY).
So we now proceed to show that
G (A") 2 Gpa(B”).
By Lemma 2.12, we may assume that 4 and B are minimal sets of generators of
i k’ = |[A| = |B|] and every d; = 1.
So we may assume that

(2.13.1) K(A) S F(A)Y-F(4Y and K(B) < F(B) - F(B).
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We know, since B is a set of generators for G, that
(2.13.2) a;=bf .. bjv.. b -v(b) in G,

where v;(b) belongs to G**-G’ for i=1,2,...,k’. Here every f;; is an integer
such that

The equations (2.13.2) can be considered to define a homomorphism
O : F(4) -~ F(B)

by taking @(a;) to be equal to the right hand side of (2.13.2) for every i. This in-
duces a homomorphism

O : F(A)/F(A)*+ F(A) -~ F(B)/F(B)** - F(B)'.

By Lemma 2.11, it remains to show that @ is surjective. Suppose that contrary to
assertion we have that @ is not surjective. Then @ induces a homomorphism

F(A)/F(A)" - F(A) -~ F(B)/F(B)"- F(B)

which is not surjective. Hence, by (2.13.1), we have that the equations (2.13.2)
induce both a surjective and a non-surjective endomorphism of G/G”-G". This
contradiction establishes the fact that @ is surjective.

2.14 Definition. The kernel of the natural projection of G, (X*) onto G (it is
denoted by A4 in Note 2.4) will from now on be denoted by =, (G, X) and will also
be called m-th fundamental group of G with respect to X. The group G, (X™) is called
m-smooth covering group*) of G with respect to X. If X is a finite minimal set of
generators for G, then G},(X™*) is denoted by G}, and called m-smooth covering group
of G. If m=p, then we do not require X to be finite.

2.15 Theorem. Let ¢: G—H be a homomorphism of groups and X and Y be
sets of generators of G and H respectively. Suppose that

0(x) = fuyy) for all x€M.
Then @f induces a homomorphism of =,(G, X) into m,(H,Y).

Proor. We have the following diagram:
' 200, )2+ X)L 51
Iy lw
1 - n,(H,Y)—— H;(Y*)T»H - 1.

Its rows are exact, by definition, and the square is commutative. For

Yo (x3) = ey(x3) = f,(¥p)-

*) See Definition 2.1 and Corollary 2.7.1.
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Let x* belong to =, (G, X). Then
Vo5 d(x*) = @yé(x*) = 1.
So there exists y* in x,,(H, Y) so that
O(y") = o7 (3(x")).
Ofln: Tw(G, X) = 7, (H,Y)

We define

by x*-—y*.
(i) The mapping ¢;|, is single-valued. For suppose that

O(y) = O (i) = 97 (6(x") for )i, yiem,(H,Y).

Then yf=y:, since @ is an isomorphism into.
(if) The mapping ¢f|, preserves the group operation. For if for i=1, 2,

e(y)) = o7 (8(x)),

o7 (3(x7 - x3)) = o7 (6(x)) - 97 (8(x2)) = O ()1) - O (33) = O (¥y7 + y2),
since O, ¢ and 6 are homomorphisms.

then

2.15.1 Corollary*). Let |X|=|Y|<e< and ¢ be an isomorphism onto. Then
@ induces an isomorphism of =, (G, X) onto =, (H,Y).

2.16 Notation. If G has a minimal set X of generators and |X| is finite or m=p,
then we denote =, (G, X) by =,,(G).

2.16.1 Note. Theorem 2.8 asserts that
G; >~ (7 an(G).

2.17 Theorem. Let G,, €M, be a collection of groups with X, being a set of
generators for G, for every u€ M. Then

T ([1"7 Gos U X)) = JT* 7 (Gas X)),
where H YV G, denotes a neutral VV-product as defined in O. N. GoLoVIN [3].

PrOOF. Let J= H*G while F,=F(X,), for every acM, and F—F(UX,)

be the corresponding free groups. Then

"G, =J/VV(J) and G, = FJR,

for every € M. By [3] Theorem 2,
II"Y G, = F|/(]] R -VV(F)) = F/(]] R,- g(R,. Fpf -VV (F)).

*) One also has to use Theorem 2.13.
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Now
([T R, I (R,, Fp)F -VV(F)N(F™- F') = [[ (R,ONF]-F})« [ (R,, Fp)F -VV (F),
a a=f a a#f
since
F*.F' = [ F*-F, -(F,)".
So
Tw(IT" Goy U X,) = [T* (RJ(R,NEF+ F)) 2 [T* 7,(G,, X))

2.17.1 Corollary. If [V G, denotes the V-product as defined in S. MORAN [13],
then x

An([]" Gas U X)) 2 JT* 7(G,, Xo).
2.17.1.1 Corollary. =, ([/T* G,, |J X,) = ] * n.(G,, X,).

2.17.1.2 Corollary. =, ([/T* G,, U X,) = [T* n,(G,, X)).
x a

2.17.1.3 Corollary. Let G,, G,, ..., G, be finitely generated groups. Then

nm[ig* Gi] = !I" Mw(G)).

This is a consequence of Grusko’s Theorem (see for instance W. MAGNUS, A.
KARRASS, 2. SOLITAR [12], p. 192).

2.18 Example. The homomorphism ¢; in Lemma 2.10 and Theorem 2.15
depends in general not only on the homomorphism ¢ but also on the words f,.
For let G and H be cyclic groups of order p* and p* which are generated by the
elements x and y respectively. Define

¢,: G-H and ¢, G- H
by ¢@,(x)=y? and @,(x)=p?"*? respectively. Then

©y = @y.
We now have that

of: Gp({x*) = Hu({y*) for i=1,2,

is defined by
P (x*) =y** and @F(x*) = y*P*+e,
So
o1 # 1.

Also they give different homomorphisms of 7,:(G, {x}) into ns(H, {y}). For

@i (x*7") = y** and @F (x*?") = y*P*+P,
These elements are not equal in m,s(H, {y}), since

(G, {x}) = (x*?") = Z,0
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while
ns(H, {y)) = (*?") = Z,.

2.19 Example. Theorem 2.13 does not hold in general for infinite sets of gen-
erators X and Y. For let

X 6, X5y ivss Xjyiin) B0 Y = Py cias X iints

Then the free group G=(x,, X, ..., X;, ...; X;=1) also has Y as a set of generators.
However the covering groups G, (X*) and G;,(Y*) are not isomorphic, by Lemma
2.12.

References

[1) W. GascHOTZ and M. F. NEwMAN, On presentations of finite p-groups. J. Reine Angew. Math.
245 (1970), 172—176.

[2] E. S. GoLop and I. R. SArarevi¢, On towers of class fields, Izv. Akad. Nauk SSSR Ser. Mat.
28 (1964), 261—272.

[3] O. N. Gorovin, Polyidentical relations in groups and operations defined by them on the class
of all groups, Trudy Moscow Math. Soc. 12 (1963), 413—435,

[4] M. HALL, The theory of groups, New York 1959.

[5] P. HALL, A contribution to the theory of groups of prime power order, Proc. London Math. Soc.
36 (1933), 29—95.

[6] B. HurperT, Endliche Gruppen I, Berlin 1967.

[7] N. Jacosson, Lie algebras, New York 1962.

[8] S. A. JEnNINGS, The structure of the group ring of a p-group over a modular field, Trans. Amer.
Math. Soc. 50 (1951), 175—185.
[9] H. KocH, Galoissche Theorie der p-Erweiterungen, Berlin 1970.
[10] A. 1. KosTRIKIN, On presenting groups by generators and defining relations, Izv. Akad. Nauk.
SSSR Ser. Mat. 29 (1965), 1119—1122. e
[11] M. Lazarp, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Ecole Norm. Sup. (3)
71 (1954), 101—190.
[12] W. MaGNuUs, A, KARRASS, D. SoLiTar, Combinatorial group theory, New York 1966.
[13] S. MOR;N, Associative operations on groups I, Proc. London Math. Soc. (3) 6 (1956), 581—
96.
[14] E. B. VINBERG, On the theorem concerning the infinitedimensionality of an associative algebra,
Izv. Akad. Nauk SSSR 29 (1965), 209—214,
[15] H. ZassenHAUS, The theory of groups, New York 1959,

THE UNIVERSITY,
CANTERBURY,
KENT.

( Received January 18, 1977.)



