Abelian groups, nil modulo a subgroup, need not have nil quotient group

By A. E. STRATTON & M. C. WEBB (Exeter)

1. Introduction

For the purposes of this paper all groups are abelian and written additively. A ring R is said to be a ring on G if the group G is isomorphic to the additive group of R. In this situation we write R = (G, *) where * denotes the ring multiplication. This multiplication is not assumed to be associative.

Every group may be turned into a ring in a trivial way by setting all products equal to zero. If this is the only multiplication compatible with G then G is said to be a *nil group*. For example every divisible torsion group is a nil group and these

are the only torsion nil groups (see [3] or [2] for details).

A generalisation of the notion of nil group is considered by FEIGELSTOCK [1]. Suppose that H is a subgroup of G; G is nil modulo H if $G*G \subseteq H$ for every ring (G, *) on G. Clearly G is a nil group if and only if G is nil modulo G. FEIGELSTOCK [1] shows that if G is a divisible subgroup of G and G is nil modulo G, then G/H is a nil group. Feigelstock goes on to ask if this is true in general. In other words: (1.1) Does G nil modulo G imply that G/G is a nil group?

In this note we show that the answer to this question must be no. However, the question has a positive answer if G is a torsion group, or if H is a direct summand of G. We go on to pose a refined version of the question which is strongly related to the problem of characterising those subgroups of G which must be ideals in any ring defined on G. We note here that any fully invariant subgroup of G is

an ideal in any ring (G, *) [2, p. 279.]

Our results are independent of the associative nature of the rings considered. In order to cope with the difficulty that the hypothesis that G be a nil group seems much stronger than the hypothesis that G has no nontrivial associative rings defined on it we introduce two further definitions.

(i) G is an Anil group if the only associative ring (G, *) on G is the trivial ring, G*G=0.

(ii) If H is a subgroup of G then G is Anil modulo H if given any associative ring (G, *) we have $G*G \subseteq H$.

2. Positive answers

Lemma 2.1. Let K be a non-zero summand of G. Let (K, \circ) be a nontrivial ring on K. Then (K, \circ) may be imbedded as a ring direct summand in some ring (G, *) in such a way that $G*G=K\circ K$. Furthermore if (K, \circ) is associative then (G, *) may be assumed associative.

PROOF. Suppose that $G = H \oplus K$. We define the ring (G, *) by putting,

$$(h, k) * (h', k') = (0, k \circ k')$$

The stated properties of (G, *) are easily verified.

Corollary 2.2. Let H be a direct summand of G. If G is nil (Anil) modulo H, then G/H is a nil (Anil) group.

PROOF. Suppose that $G = H \oplus K$, where $K \cong G/H$. If K is non-nil (non-Anil) then according to Lemma 2.1 there is a nontrivial ring (G, *) with $G * G \subseteq K$, contradicting the hypothesis on G.

Corollary 2.3. (Feigelstock [1]). If H is a divisible subgroup of G and G is nil (Anil) modulo H then G/H is nil (Anil).

Theorem 2.4. Let G be a torsion group. If G is nil (Anil) modulo H then G/H is nil (Anil).

PROOF. We assume first that G is a p-group. Let B be a basic subgroup of G with independant generators $\{a_i \colon i \in I\}$. According to Theorem 120.1 [2, page 287] any multiplication * on G is uniquely determined by the values $a_i * a_j$ for all pairs i, j from I. Furthermore, $a_i * a_j$ may be asigned any values in G subject to the condition that the order of $a_i * a_j$ is no greater than the minimum of the orders of a_i and a_j . In particular we may define an associative multiplication on G by setting

(2.5)
$$a_i * a_j = \begin{cases} 0 & \text{if } i \neq j, \\ a_i & \text{if } i = j. \end{cases}$$

It is clear that $B \subseteq G * G$. Thus if G is nil (Anil) modulo H then $B \subseteq H$. It follows that G/H is a quotient group of the divisible group G/B. Whence G/H is divisible and so nil.

Next we suppose that G is an arbitary reduced torsion group. Let $G = \bigoplus_p G_p$ be the decomposition of G into its primary components. The G_p are fully invariant subgroups of G and so ideals in any ring (G, *). Indeed, we have a ring direct sum decomposition,

(2.6)
$$(G, *) = +_{p}(G_{p}, *_{p})$$

where $*_p$ is the restriction of * to G_p . Conversely given any multiplications $*_p$ on the G_p we can define a ring on G via (2.6). We may also decompose H as a direct sum $\bigoplus_p H_p$ of its primary components, $H_p = H \cap G_p$. The hypothesis that G is nil (Anil) modulo H implies that each G_p is nil (Anil) modulo H_p . It follows that G_p/H_p is divisible for all primes p. Thus $G/H = \bigoplus_p (G_p/H_p)$ is divisible and so nil. Finally we suppose that G is an arbitrary torsion group. Then $G = A \oplus D$

Finally we suppose that G is an arbitary torsion group. Then $G = A \oplus D$ where A is reduced and D is divisible. If A = 0 then G and all its quotients are nil groups. We assume then that $A \neq 0$. Let (A, \circ) be a ring on A, then by Lemma 2.1 there is a ring (G, *) with $G * G = A \circ A$. The hypothesis that G be nil modulo H implies that,

$$A \circ A \subseteq A \cap H$$
.

Since (A, \circ) is an arbitrary ring an A we see that A is nil modulo $A \cap H$. By what has gone before we deduce that $(A+H)/H \cong A/(A \cap H)$ is divisible. It follows that,

$$G/H \cong G/(A+H) \oplus (A+H)/H$$
;

and since G/(A+H) is clearly a quotient of D we deduce that G/H is divisible, and so a nil group.

3. A counterexample

According to [2, p. 292; Theorem 121.1 and Proposition 121.2] there is an abundance of torsion-free nil groups (in fact it is not hard to produce such a group with any preassigned cardinality). Let G be such a group. We note that G cannot be divisible and so there is an integer n for which $G \neq nG$. Thus the group G/nG is a non-trivial bounded group; and so, by a result of Szele [3] (see [2], p. 288; Theorem 120.33), G/nG is non-nil. We have then a nil-group G, which is thus nil modulo nG, for which G/nG is non-nil. Hence (1.1) must be answered in the negative. We would like to thank the referee for pointing out this simple example.

4. A reformulation of the problem

The counterexample of § 3 depends on the trivial fact that a nil group is nil modulo any of its subgroups. It is clear that if G is nil modulo both H_1 and H_2 then G is nil modulo $H_1 \cap H_2$. This suggests the following definition of the square subgroup K of G as,

$$K = \bigcap \{ H \leq G : G \text{ is nil modulo } H \}.$$

Clearly K is the smallest subgroup with the property that G is nil modulo K. In particular if G is a nil group, then K=0. We ask if G/K is a nil group?

We recall that a ring (G, *) defines an element of $\operatorname{Hom}(G, E(G))$, E(G) being the endomorphism ring of G, as follows. For each g in G, $\Theta(g)$ is the endomorphism of G defined by,

$$(4.1) \Theta(g): x \to x * g$$

Conversely given $\Theta \in \text{Hom}(G, E(G))$ we may use (4.1) to define a ring (G, *). (For details see [2, p. 278 ff.])

Following Fuchs [2] we let l(G) be the subgroup of E(G) generated by Im Θ , for all $\Theta \in \text{Hom}(G, E(G))$. This is an ideal of E(G), with the property that a subgroup H of G is an ideal in every ring on G if and only if $l(G)H \subseteq H$. (See [4], and [2] p. 279.) We remark that G is an E(G) module and so l(G)G is a submodule of G.

Proposition 4.1. K=l(G)G.

PROOF. Since G is nil modulo K, we have $\Theta(g)x = x * g \in K$ for all $\Theta \in \text{Hom}(G, E(G))$, and g, x in G. Thus $I(G)G \subseteq K$.

Conversely, the fact that l(G) is an ideal in E(G) implies that G is nil modulo l(G)G, whence the result.

References

[1] S. FEIGELSTOCK, The absolute annihilator of an abelian group modulo a subgroup, Publ. Math. (Debrecen) 23 (1976), 221—224.

[2] L. Fuchs, Infinite Abelian Groups, vol. II, New York, London 1973.

[3] T. Szele, Zur Theorie der Zeroringe, Math. Ann. 121 (1949), 242—246.

[4] E. Fried, On the subgroups of an abelian group that are ideals in every ring, *Proc. Colloq. Abelian Groups Budapest*, (1964), 51—55.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EXETER, EXETER, ENGLAND.

(Received April 25, 1977.)

During the preparation of this paper the second author received a grant from the Science Research Council and gratefully acknowledges this fact.