Holomorphy theory of F loops

By F. LEONG (U.S.M., Malaysia)

D. A. Robinson has written "Holomorphy Theory of Extra Loops" [6]. The present paper extends the results in his paper to a class of loops much wider than that of extra loops. All terms and symbols follow those in [2], [3] unless otherwise stated.

Let G be a Moufang loop. G_a is defined as the subloop generated by all the associators (x, y, z) of G and G_c is defined as the subloop generated by all the commutators [x, y] of G. G_a is normal in G, [5].

An F loop is a Moufang loop such that if H is a subloop generated by any three elements, then $H_a \subset Z(H)$ where Z(H) is the centre of H.

An EF loop G is an F loop such that G_a is nilpotent.

A pE loop G is a Moufang loop such that G/N is commutative of exponent p, p a prime and N is the nucleus of G.

It is known that extra loops [4] and commutative Moufang loops [1] are 2E loops and 3E loops respectively. We also have the following:

Result: If G is a Moufang loop such that G/N is commutative, then G is an EF loop.

PROOF. As G/N is commutative, $G_c \subset N$. By [2], p. 125, L 5.5, G is an F loop. By [2], p. 161, T. 11.4, (G/N)' = G'N/N is of exponent 3. Thus, $(G'N)^3 = N$ and $G_a^3 \subset N$. By [3], $G_a^3 \subset Z(G_a)$. As G_a/G_a^3 is a 3-loop, it is nilpotent. Thus G_a is nilpotent and G is an EF loop.

Definition. Let G be a loop and \mathscr{A} a group of automorphisms of G. Let $H=(\mathscr{A},G)=\{(A,a)|A\in\mathscr{A},a\in G\}$. Multiplication on H is defined as: (A,a)(B,b)=(AB,aBb). Then, H is a loop which is called the \mathscr{A} holomorph of G. See [1], p. 336, Sec. 5.

Lemma 1. Let G be a loop and \mathcal{A} a group of automorphisms. Let $H=(\mathcal{A}, G)$ be the \mathcal{A} holomorph of G. Writing

$$(A, a)(B, b) = ((B, b)(A, a))(X, x) \dots (R)$$

 $(A, a)(B, b) \cdot (C, c) = ((A, a) \cdot (B, b)(C, c))(Y, y) \dots (S)$
 $X = [A, B], aBb = (bAa)[A, B] \cdot x$
 $Y = I, y = (aBC, bC, c).$

Then.

PROOF. By definition and computation.

Definition. Let G be an I. P. loop. Let M[G], the Moufang nucleus of G, be defined as the set $\{g \mid g \in G, gx \cdot yg = (g \cdot xy)g, \forall x, y \in G\}$. It is proved in [1], p. 297, T.4A that M[G] is a Moufang loop.

Proposition 1. Let $H=(\mathcal{A},G)$ where \mathcal{A} is a group of automorphisms of the Moufang loop G. Then

(a) $M[H] = \{(A, a) | A \in \mathcal{A}, a \in G, a^{-1} \cdot aB \in N(G) \forall B \in \mathcal{A}\}.$

(b) G is an $F loop \Rightarrow M[H]$ is an F loop.

(c) G is an EF loop \Rightarrow M[H] is an EF loop.

(d) G is a pE loop \Rightarrow M[H] is a pE loop.

PROOF.

(a) By [1], p. 336, T.5A, (v).

(b) Let (A, a), (B, b), $(C, c) \in M[H]$. By (a) and lemma 1 (R), [(B, b), $(C, c)] = = ([B, C], [b, c]n_0)$, $n_0 \in N$. By (a) and lemma 1 (S), $((A, a), (B, b), [(B, b), (C, c)]) = = (I, (an_1, bn_2, [b, c]n_0))$, $n_1, n_2 \in N$, = (I, (a, b, [b, c])) = (I, 1) as G is an F loop.

(c) By (a) and lemma 1 (S), every associator of M[H] is of the form (1, (a, b, c)), $a, b, c \in G$. Conversely, every element (1, (a, b, c)) is in H_a since it is equal to ((1, a), (1, b), (1, c)). Thus $M[H]_a \cong G_a$. Since G_a is nilpotent, $(M[H])_a$ is nilpotent.

(d) Let (A, a), (B, b), (C, c), $(D, d) \in M[H]$. By (a) and lemma 1 (R), [(A, a), (B, b)] = ([A, B], [a, b]n), $n \in N = ([A, B], n_0)$, $n_0 \in N$, as G is an pE loop. By (a) and lemma 1 (S), $((C, c), (D, d), [(A, a), (B, b)]) = (I, (cn_1, dn_2, n_0))$ ease; $= (I, 1) n_1, n_2 \in N$.

Also, by (a), $(A, a^p) = (A^p, a^p n_0), n_0 \in \mathbb{N}$. As $a^p \in \mathbb{N}, (A, a)^p \in \mathbb{N}(M[H])$. Thus, M[H] is a pE loop.

Proposition 2. Let \mathscr{A} be a group of automorphisms of a loop G. Let $H=(\mathscr{A}, G)$. Then $gA \in gN \ \forall A \in \mathscr{A}$, $\forall g \in G$ together with G being

(a) an F loop⇔H is an F loop;

(b) an EF loop⇔H is an EF loop;

(c) a pE loop $\Leftrightarrow H$ is an pE loop.

PROOF. (a) Suppose H is an F loop. Then, G is an F loop since it is isomorphic to a subloop (I, G) of H. Since H is Moufang, M[H] = H. By Proposition 1 (a), $gA \in gN \ \forall g \in G, \ \forall A \in \mathscr{A}$.

Conversely, suppose G is an F loop with $gA \in gN \ \forall g \in G, \ \forall A \in \mathcal{A}$. Then, M[H] = H by Proposition 1 (a) and H is an F loop by Proposition 1 (b). The other cases are similarly treated.

Remark. (c) is a generalization of the Main Theorem in [6].

Lemma 2. Let G be a Moufang loop such that $G_c \subset N$ and let Aut(G) be the group of automorphisms of G. Let

$$\mathscr{A} = \{A \mid A \in \text{Aut } (G), gA \in gN, \forall g \in G\}.$$

Then, either \mathcal{A} is a nontrivial subgroup of $\operatorname{Aut}(G)$ or $|G| \leq 2$.

PROOF. By [5], as $G_c \in N$, $R^3(x, y) \in Aut(G)$, $x, y \in G$. As shown before, $G_a^2 \subset N$.

Then, $zR^3(x, y) = z(z, x, y)^3 \in zG_a^3 \subset zN$, $\forall z \in G$. So, $R^3(x, y) \in \mathcal{A}$.

Suppose $R^3(x, y) = 1 \,\forall x, y \in G$. Then $(z, x, y)^3 = 1 \,\forall z \in G$. Thus., $z^3 \in N$. Hence G/N is a commutative Moufang loop of exponent 3. By [1], p. 302, (iv), $I(G) \subset Aut(G)$. In particular, $T(x) \in Aut(G) \,\forall x \in G$. As $G_c \subset N$, $T(x) \in \mathscr{A}$ since $gT(x) = g[g, z] \,\forall g \in G$.

Suppose $T(x)=I\forall x\in G$. Then G is a commutative Moufang loop. Let $z_2\in Z_2-Z$. Then, $R(z_2,w)\neq I$ for some $w\in G$. Hence, $xR(z_2,w)=x(x,z_2,w)\in xZ=xN\forall x\in G$. This implies that $R(z_2,w)\in \mathscr{A}$. If $Z_2=Z$, then G is an abelian group.

Then, $\mathcal{A} = \operatorname{Aut}(G) \neq 1$ unless $G = C_2$ or 1.

Corollary: ∃ a strictly increasing sequence of EF loops.

Let G be any nonassociative Moufang loop such that $G_c \subset N$. By our result, it is an EF loop. Let $H=(\mathcal{A}, G)$ where \mathcal{A} is defined by lemma 2. It is easy to see that $H_c \subset N(H)$. Continue with H.

Corollary: \exists a nonassociative pE loop of order p^n for any $n \ge 4$ if $p \le 3$ and any $n \ge 5$ if p > 3.

PROOF. For $p \le 3$; the existence of a non-associative Moufang loop G of order p^4 is well known. It is clear that $\exists x, y \in G$ such that R(x, y) is an automorphism of G of order p and that $gR(x, y) \in gN \forall g \in G$. Let $\mathscr{A} = \langle R(x, y) \rangle$; $H = (\mathscr{A}, G)$. By Proposition 2 (c) H is a pE loop of order p^5 . As $H/(I, G) \cong (\mathscr{A}, 1)$, $H_a \cong G_a \cong C_p$. Continue with H.

For $p \ge 5$: By [7], p. 408, those Moufang loops constructed can be verified to be nonassociative pE loops of order p^5 . Proceed as above.

References

- [1] R. H. Bruck, Contribution to the Theory of Loops, Trans. A.M.S. 60 (1946), 245—354.
- [2] R. H. BRUCK, A survey of Binary System, Berlin—New York, 1971.
- [3] F. Fenyves, Extra Loops I, Publ. Math. (Debrecen) 15 (1968), 235—238.
- [4] F. Fenyves, Extra Loops II. On Loops with Identities of Bol-Moufang Type, *Publ. Math.* (Debrecen) 16 (1969), 187—192.
- [5] F. LEONG, The Devil and Angel of Loops, Proceedings A.M.S. 54 (1976), 32-34.
- [6] D. A. Robinson, Holomorphy Theory of Extra Loops, Publ. Math. (Debrecen) 18 (1971), 59—64.
- [7] C. R. B. Wringt, Nilpotency Conditions for Finite Loops, Illinois J. Math. 9 (1965), 399-409.

(Received June 16, 1977.)